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Land acknowledgement

We are meeting today on the traditional territory and homelands of the
Luiseño/Payómkawichum people.
I did the research described in this talk in my home about 30 miles south of
here, on unceded Kumeyaay territory.
I would like to

honor the legacy of the continued presence of the native peoples of San Diego County;
recognize the violent history of colonization in California.

Moving beyond acknowledgements
CSUSM hosts the California Indian Culture and Sovereignty Center.
Located in SBSB 1118, open to all faculty, staff, and students.
The CICSC web site suggests ways for those of us who are guests on this
land to support, and build accountable relationships with, native peoples.
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Acknowledgement and references

The non-historical parts of this talk are based on joint work with Vassil Dimitrov
(University of Calgary and IOTA Foundation, Berlin).

Our paper describing further applications of today’s talk
Vassil S. Dimitrov and Everett W. Howe,
Powers of 3 with few nonzero bits and a conjecture of Erdős,
arXiv: 2105.06440

This paper was written with the intent of being accessible to undergraduates.
It assumes the reader knows about congruences and about the rings Z/mZ.
It has complicated arguments! But no further technical background is needed.
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Musical demonstration
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Ratios of lengths and pitches of musical notes

The first string on my friend’s ukulele is 34.6 cm long.

How much do we shorten the string to get basic musical intervals?

Length of Decimal Rational
Relative pitch string (cm) fraction fraction

Octave 17.3 0.50 1/2
Fifth 23.3 0.67 2/3
Fourth 25.9 0.75 3/4
Third 27.6 0.80 4/5
Whole step 30.9 0.89 8/9

In the 14th century, music theorists did not like the musical interval of a third.
The intervals they liked correspond to the fractions 1/2, 2/3, 3/4, 8/9.
What are some things you notice about these fractions?
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Our 14th century cast of characters

Philippe de Vitry (1291–1361)
French Catholic priest and musician
Wrote Ars nova notandi (“The new art of notation”) in 1322; ushered in a new
age of medieval European music, known as the “Ars nova” style
Became Bishop of Meaux in 1351

Levi ben Gerson (1288–1344)
French rabbi, philosopher, mathematician, and scientist
Also known as Gersonides, Magister Leo Hebraeus, and RaLBaG
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What de Vitry noticed

Music and number theory
de Vitry called a number “harmonic” if it was of the form 2a · 3b.
The numerators and denominators of the musical fractions (1/2, 2/3, 3/4,
8/9) are all harmonic numbers!
And the numerators and denominators differ by 1.

The numerators and denominators give solutions to

3x = 2y ± 1.
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De numeris harmonicis

de Vitry asked ben Gerson whether there were any other pairs of harmonic
numbers that differ by 1.

ben Gerson’s answer
ben Gerson wrote De numeris harmonicis (“On harmonic numbers”) in 1342.
Written in Hebrew. No contemporaneous Hebrew copies known to still exist.
14th century Latin translations do exist.
ben Gerson begins by saying that de Vitry asked him this question.
He shows that no other such pairs exist!

Remarkable when you consider that mathematicians did not yet use letters for
variables!
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What a 14th century manuscript looks like

First page of Gersonides’s proof, courtesy of the Bibliothèque national de France

A more legible paraphrase is given in:

Karine Chemla and Serge Pahaut,
Remarques sur les ouvrages
mathématiques de Gersonide,
pp. 149–191 in:

G. Freudenthal (ed.),
Studies on Gersonides —
A Fourteenth-Century Jewish
Philosopher-Scientist,
E. J. Brill, Leiden, 1992
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Five cases of ben Gerson’s proof
ben Gerson’s proof involves proving thirty (!) intermediate cases and results.

The critical results
26. 32n+1 − 1 is not a power of 2, unless n = 0, which gives 31 − 1 = 21.
27. 34n − 1 is not a power of 2.
28. 34n+2 − 1 is not a power of 2, unless n = 0, which gives 32 − 1 = 23.
29. 32n + 1 is not a power of 2, unless n = 0, which gives 30 + 1 = 21.
30. 32n+1 + 1 is not a power of 2, unless n = 0, which gives 31 + 1 = 22.

If you squint hard enough, he proves these by showing that:
26. 32n+1 − 1 ≡ 2 mod 4.
27. 34n − 1 ≡ 0 mod 5.
28. 34n+2 − 1 ≡ 8 mod 16.
29. 32n + 1 ≡ 2 mod 4.
30. 32n+1 + 1 ≡ 4 mod 8.
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The proof I saw in graduate school
Problem: Find all x and y with 3x ± 1 = 2y .

Case 1: x is odd
3x ≡ 3 mod 8, so left hand side is 2 or 4 mod 8.
Left hand side can’t be a power of 2 unless it is equal to 2 or 4.

Case 2: x is even and 3x + 1 = 2y

3x ≡ 1 mod 8, so left hand side is 2 mod 8.
Left hand side can’t be a power of 2 unless it is equal to 2.

Case 3: x is even and 3x − 1 = 2y

If x = 2z then 3x − 1 = 32z − 1 = (3z + 1)(3z − 1).
If this is a power of 2, then both factors are powers of 2.
The two factors differ by 2, so we must have 3z − 1 = 2.
This gives z = 1, so x = 2.
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The nicest proof I know

Let’s go to the whiteboard. . .

Powers of 2 mod 80: 1 2 4 8 16

32

64

48

// // // //

��

tt

\\

44

Powers of 3 mod 80: 1

3

9

27
��

ss

\\

33
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New (?) topic: Powers of 3 in binary
n binary representation of 3n #bits #ones

1 11 2 2
2 1001 4 2
3 11011 5 4
4 1010001 7 3
5 11110011 8 6
6 1011011001 10 6
7 100010001011 12 5
8 1100110100001 13 6
9 100110011100011 15 8

10 1110011010101001 16 9
11 101011001111111011 18 13
12 10000001101111110001 20 10
13 110000101001111010011 21 11
14 10010001111101101111001 23 14
15 110110101111001001101011 24 15
16 10100100001101011101000001 26 11
17 111101100101000010111000011 27 14
18 10111000101111001000101001001 29 14
19 1000101010001101011001111011011 31 17
20 11001111110101000001101110010001 32 17
21 1001101111011111000101001010110011 34 20
22 11101001110011101001111100000011001 35 19
23 1010111101011010111101110100001001011 37 22
24 100000111000010000111001011100011100001 39 16
25 1100010101000110010101100010101010100011 40 18

What do you notice? What do you wonder?
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Some things that are known about powers of 3 in binary

Senge and Strauss [1973]: The number of 1s in 3x goes to infinity with x .
Stewart [1980]: Gives a computable lower bound B(n):

If x > B(n), then 3x has more than n ones in binary.

Stewart’s bound is not very practical. . .

B(3) > 5000; B(4) > 300,000; B(22) > 4.9× 1046.

What does this mean?
Suppose you would like to find all x such that 3x has at most 22 bits equal to 1.

Stewart says: You can simply start checking values of x one by one, and stop at
some point after you’ve checked 4.9× 1046 values.
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de Vitry and beyond

Half of de Vitry’s question was to solve 3x = 1 + 2y .
Rephrased: “What powers of 3 have two 1s when written in binary?”

Looking for specific numbers of 1s
ben Gerson [1342]: If 3x has two 1s in binary then x = 1 or x = 2.
Pillai [1945]: If 3x has three 1s in binary then x = 4.

Uses a complicated congruence argument.
Bennett, Bugeaud, and Mignotte [2011 and 2013]: If 3x has four 1s in binary
then x = 3.

Uses a powerful advanced tool: linear forms in logarithms.
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The powers of 3 in binary again
n binary representation of 3n #bits #ones

1 11 2 2
2 1001 4 2
3 11011 5 4
4 1010001 7 3
5 11110011 8 6
6 1011011001 10 6
7 100010001011 12 5
8 1100110100001 13 6
9 100110011100011 15 8

10 1110011010101001 16 9
11 101011001111111011 18 13
12 10000001101111110001 20 10
13 110000101001111010011 21 11
14 10010001111101101111001 23 14
15 110110101111001001101011 24 15
16 10100100001101011101000001 26 11
17 111101100101000010111000011 27 14
18 10111000101111001000101001001 29 14
19 1000101010001101011001111011011 31 17
20 11001111110101000001101110010001 32 17
21 1001101111011111000101001010110011 34 20
22 11101001110011101001111100000011001 35 19
23 1010111101011010111101110100001001011 37 22
24 100000111000010000111001011100011100001 39 16
25 1100010101000110010101100010101010100011 40 18

My work with Dimitrov [2020]: If 3x has twenty-two 1s or fewer, it is on this table.
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Our argument for finding powers of 3 with n ones in binary

Essentially the same as the simplified proof of ben Gerson’s theorem!

Find a modulus m such that the following works:
Compute the powers of 2 modulo m. Call this set S; it has a tail and a cycle.
Compute the powers of 3 modulo m. Call this set T .
Compute all solutions to

X ≡ A1 + · · ·+ An (1)

with X ∈ T and Ai ∈ S. We may assume that A1 = 1.
Hope that for each solution, all of the Ai are on the tail of S.
If so, there is only one integer ai with 2ai ≡ Ai mod m.
Lift all right hand side terms of (1) to the integers and check whether their sum
is a power of 3.
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Example: A simpler proof for n = 4

Take m = 210 · 5 · 7 · 13 · 257.
The set S of powers of 2 mod m has 58 elements, 10 on the tail.
The set T has 768 elements.
Using a computer, compute all possible sums of 1 plus three elements of S.
There are 26169 such sums.
List the sums that are in T .

9 ≡ 1 + 2 + 2 + 4
27 ≡ 1 + 2 + 8 + 16
81 ≡ 1 + 8 + 8 + 64
81 ≡ 1 + 16 + 32 + 32
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Difficulties

The moduli that work are rare
We need some method of choosing m that are likely to work.

The computations modulo m may be hard!
We need some efficient way of computing the solutions to (1).

Details for our result for n = 22
Our m was a 376 digit number built up from 56 prime factors.
There are 3,710,851,743,781 powers of 2 modulo m, with 37 on the tail.
There are more than 7.4× 1045 powers of 3 modulo m.
Took 207 hours on my previous laptop.

We started with a small divisor of m, computed solutions to (1) modulo that divisor,
and then added in more primes one at a time to build up to the solutions modulo m.

Everett W. Howe Math from Medieval Musicians 19 of 22



Original motivation for my coauthor and me

Dimitrov was looking at “double-base representations” of integers.
Given n, what is the shortest expression

n = 2a13b1 ± 2a23b2 ± · · · ± 2ar 3br ?

(Harmonic numbers show up again!)
Short representations give quick ways of multiplying a point on an elliptic curve
by n. Useful for speeding up cryptography.
Dimitrov wanted to show that 4985 could not be written with three such terms.
Could prove this by looking modulo 52 · 7 · 11 · 13 · 19 · 31 · 37 · 61 · 73 · 181.
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Further work?

Our computer code is tuned to the specific cases we considered in our paper:

Finding powers of 3 with a given number of 1s in binary.
Finding powers of 2 whose base-3 “digits” are all 0 or 1.
(Erdős conjectured that 2, 4, and 256 are the only such powers of 2.)

Is there a way to make general “set and forget” code that will solve other equations
of this type about as efficiently?
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In case you want to know the m that worked for twenty-two bits

m = 237 · 33 · 5 · 13 · 17 · 19 · 37 · 97 · 109 · 193 · 241 · 257 · 433 · 577 · 641 · 673 ·
769 · 1153 · 6337 · 12289 · 18433 · 38737 · 65537 · 87211 · 101377 · 114689 ·
274177 · 319489 · 786433 · 9748491179649 · 2424833 · 13631489 ·
14155777 · 39714817 · 113246209 · 167772161 · 171048961 · 1107296257 ·
3221225473 · 7348420609 · 7908360193 · 29796335617 · 74490839041 ·
77309411329 · 206158430209 · 246423748609 · 448203325441 ·
1084521185281 · 2748779069441 · 5469640851457 · 5566277615617 ·
25048249270273 · 28114855919617 · 942556342910977 · 1095981164658689
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