
Lattice basics

Shahed Sharif

November 7, 2019

1 SVP and CVP

We will assume that L is a rank n lattice in Rn. We equip Rn with the usual
inner product. Recall the two fundamental lattice problems:

Problem 1 (SVP). The Shortest Vector Problem is the problem of finding
the shortest nonzero v ∈ L. We say the length of such a vector is λ1(L).
Given γ ≥ 1, the γ-SVP is the problem of finding nonzero v ∈ L such that
‖v‖ ≤ γ · λ1(L).

Problem 2 (CVP). The Closest Vector Problem is the problem of, given w ∈
Rn, finding v ∈ L which minimizes ‖w − v‖. Let v0 be such a vector. Given
γ ≥ 1, the γ-CVP is the problem of finding v ∈ L such that ‖w−v‖ ≤ γ ·‖w−v0‖.

The main method for attacking these problems is lattice reduction. We
assume that L is given by a basis v1, . . . , vn. A lattice reduction algorithm
takes this basis as input and outputs a better basis. Informally, “better” means
more useful for solving the above lattice problems. The ideal situation is if we
can find an orthogonal basis. Of course, this may not be possible, so instead we
wish to find as close to an orthogonal basis as possible.

2 The Hermite bound

The Hermite bound gives an upper bound for λ1(L). The idea is to apply
Minkowski’s Convex Body Theorem to the lattice L with a convex body consist-
ing of a closed ball of sufficiently large radius. Minkowski’s Theorem guarantees
that such a ball contains a nonzero lattice point, whose length is bounded by
the radius of the ball. For n >> 0, the volume of the n-dimensional unit ball is
approximately (2πe

n)n/2. From there, it is not hard to show that

λ1(L) ≤
√

2πe

n
covol(L)1/n.

If we instead choose a unit ball whose volume equals covol(L), we are not guar-
anteed to find a nonzero lattice point, but as we vary our lattice, we expect

1

to find one on average. The Gaussian heuristic quantifies this expectation; we
compute the radius of the ball with volume equal to covol(L), and obtain the
expectation

σ(L) =

√
2n

πe
covol(L)1/n.

The use of the Gaussian heuristic is that it gives a benchmark for difficulty
of the SVP. If we know that λ1 is much shorter than σ(L), then L has an
“unusually” short vector, so SVP algorithms should perform better. Conversely,
if λ1 > σ(L), we expect SVP algorithms to perform poorly.

3 Lagrange-Gauss reduction

Let n = 2. We say a basis b1, b2 for L is Lagrange-Gauss reduced if

‖b1‖ ≤ ‖b2‖ ≤ ‖b2 + qb1‖

for all q ∈ Z.
Recall the Gram-Schmidt algorithm. Given input b1, . . . , bn, write b∗1, . . . , b

∗
n

for the output. While Gram-Schmidt returns a good set of vectors, the new
vectors will not generally be a basis for the lattice generated by the bi. Let

µij =
〈b∗j , bi〉
〈b∗j , b∗j 〉

.

We call integer Gram-Schmidt the Gram-Schmidt process, but with bµije in
place of µij . Thus, the vectors produced by integer Gram-Schmidt will remain
a basis for the given lattice. Of course, the output will not be orthogonal.

To produce a Lagrange-Gauss reduced basis, we start with a basis b1, b2, and
proceed as follows.

1. Apply integer Gram-Schmidt to b1, b2, and replace with the new vectors.

2. If ‖b2‖ < ‖b1‖, swap them, then return to step 1.

3. Output b1, b2.

The motivation behind step 1 should be clear. We certainly need the second
step to produced a reduced basis. The geometric justification is as follows. If the
fundamental domain defined by b1, b2 is extremely skew, integer Gram-Schmidt
replaces it with one which is less skew; that is, closer to a rectangle. However,
if b2 is much shorter than b1, this “unskewing” is very coarse. By swapping the
two, we are able to obtain a better basis.

To see that the algorithm outputs a Lagrange-Gauss reduced basis, observe
that ‖b2+tb1‖2 is quadratic in t, and is minimized when t = µ21. Therefore if t ∈
Z, it is minimized when t = bµ21e. To see that the algorithm terminates, observe
that b1, b2 always form a basis, and that b1 gets shorter at every iteration.

2

Proposition 3.1. Let b1, b2 be a Lagrange-Gauss reduced basis for L. Then
λ1 = ‖b1‖. Furthermore, r = ‖b2‖ is the smallest number for which

dim(Span{v ∈ L | ‖v‖ ≤ r}) = 2.

Thus, in a sense b1 and b2 are the shortest vectors in L.

4 LLL

LLL is the n-dimensional generalization of Lagrange-Gauss. Recall the vectors
b∗i and scalars µij from the Gram-Schmidt process. Fix a parameter δ with
1
4 < δ < 1. We say a basis b1, . . . , bn for our lattice L is δ LLL-reduced if

1. (Size reduced) |µij | ≤ 1
2 whenever 1 ≤ j < i ≤ n

2. (Lovàsz condition) ‖b∗i + µi,i−1b
∗
i−1‖2 ≥ δ‖b∗i−1‖2

Lenstra-Lenstra-Lovàsz set δ = 3/4 as a default value, and that choice is now
considered the conventional one. The greater the value of δ, the better the basis,
at a cost in computational time.

The first condition makes sure that the basis is fairly close to orthogonal.
For the second condition, we compare to the Lagrange-Gauss condition. If we
translated that condition directly, we would get something like

‖bi + qbi−1‖2 ≥ ‖bi−1‖2

for all q ∈ Z. The replacement of q with µi,i−1 is easy to justify: if we allow q to
be real, then the left-hand side is minimized when q = µi,i−1. The replacements
of bi with b∗i , as well as the introduction of δ, are technical changes that do not
greatly impact the quality of the resulting basis, but do permit a polynomial-
time algorithm to find an LLL-reduced basis.

Such an algorithm is given as follows. First, we compute all values b∗i and
µij as above. Then we proceed:

1. Initialize a counter k = 2.

2. Apply integer Gram-Schmidt to bk. (This should be done first with bk−1,
then bk−2, etc. Note that order matters for integer Gram-Schmidt.)

3. Check the Lovàsz condition for bk.

(a) If it passes, go to the next step.

(b) If it fails,

• swap bk and bk−1,

• recalculate all b∗i and µij ,

• decrement k, and

• go back to step 2.

3

4. Increment k. If k ≤ n, go back to step 2. Otherwise, output the bi.

Just as with Lagrange-Gauss reduction, the output is certainly LLL-reduced.
Termination is trickier to prove, but the idea is similar: find a quantity which
decreases with each iteration, but is also bounded below.

An LLL-reduced basis has the following nice properties:

Theorem 4.1. Suppose b1, . . . , bn is an LLL-reduced basis with δ = 3/4 for the
lattice L. Then 2(1−i)/2λi(L) ≤ ‖bi‖ ≤ 2(n−1)/2λi(L) for all i.

Proposition 4.2. Let b1, . . . , bn be a δ LLL-reduced basis. Then

‖b1‖ ≤
(

2√
4δ − 1

)n−1

λ1(L).

Thus we can use LLL to solve γ-SVP when γ ≥ (2/
√

3)n−1.

Proposition 4.3. Let b1, . . . , bn be the input to LLL for fixed parameter δ.
Suppose X ≥ ‖bi‖ for all bi. Then the running time of LLL is polynomial in n
and logX.

The dependence on δ is at most multiplicative in − 1
log δ . This looks bad for

δ close to 1, but if one chooses (for example)

δ =
1

4
+

(
3

4

)n/(n−1)

then the running time is still polynomial in n.

5 Babai’s CVP algorithms

5.1 Rounding algorithm

The algorithm is as follows: we give as input a basis b1, . . . , bn for L and w ∈ Rn.
We wish to output v ∈ L which is close to w.

1. Compute αi ∈ R such that w = α1b1 + · · ·+ αnbn.

2. Set v = bα1eb1 + · · ·+ bαnebn.

It is not hard to see that if the basis is orthogonal, then this algorithm gives an
exact answer to CVP. However, if the basis is skew, then the output v can be
relatively far from w.

Theorem 5.1. If b1, · · · , bn is LLL-reduced with δ = 3/4, w ∈ Rn, v is the
output of the rounding algorithm, and v0 is the actual solution to CVP, then

‖w − v‖ ≤ (1 + 2n(9/2)n/2)‖w − v0‖.

4

In other words, the rounding algorithm solves γ-CVP with γ = (1+2n(9/2)n/2).
Babai also introduced a better algorithm, called the nearest plane algorithm.

It efficiently solves the γ-CVP problem with γ = 2n/2. Briefly, the algorithm
works recursively on dim(L). Let U be the span of b1, . . . , bn−1. The algorithm
first finds v1 ∈ L which minimizes the distance from w to v1 + U . Then we
replace w with the projection w1 of w − v1 to U . Let L1 = L ∩ U . We now
repeat with L1, w1 to obtain v2, etc. Our final output is

∑
vi.

5

	SVP and CVP
	The Hermite bound
	Lagrange-Gauss reduction
	LLL
	Babai's CVP algorithms
	Rounding algorithm

