
Peikert’s C-Sieves paper

Shahed Sharif

October 2, 2019

1 Basics of quantum computing

In quantum computing, data takes the form of elements of PN−1C for some N .
Quantum operations are elements of PU(N), the projective unitary group. Most
of these cannot be implemented efficiently (that is, in quantum polynomial
time), but in the course of this talk we will only encounter efficient operations.
We write elements of PN−1C as vectors, or quantum states,

|ψ〉 =

N∑
j=1

αj |j〉 .

We cannot access the coefficients αj directly. Instead, we have a measurement
operation, which works as follows. Lift |ψ〉 to CN ; without loss of generality the
lift v has length 1. Choose an orthonormal basis w1, · · · , wN for CN , and write

v =
∑

βjwj .

Then measurement is a probabilistic operator which takes |ψ〉 as input and out-
puts wj with probability |βj |2. It is also a destructive process; |ψ〉 becomes wj
at the conclusion, and so successive measurements give no additional informa-
tion. We can’t choose just any basis wi, but the set of permissible bases won’t
concern us at this time.

We can also tensor state vectors. We usually write |i〉 |j〉 or |ij〉 in place of
|i〉 ⊗ |j〉. The tensor product, on the level of projective spaces, is given by the
Segre embedding PM−1 × PN−1 → PNM−1.

There is a way of combining partial measurement with unitary operators to
obtain the following.

Proposition 1.1. Given an efficient classical function f : {1, · · · , N} → X for
some set X, there is a probabilistic quantum algorithm that takes as input

|ψ〉 =

N∑
j=1

αj |j〉 ,

1

and outputs a random element κ ∈ im(f), while also transforming |ψ〉 to∑
f(j)=κ

αj |j〉 .

In the literature, this procedure is often referred to as “measuring f .”
Lastly, the most important quantum operator is the quantum Fourier trans-

form. Let χ : Z/NZ → C be a primitive character; for example, χ descends
from

m 7→ e2πim/N .

Then the QFT on PN−1C is the unique element Q of PU(N) for which

Q |j〉 =

N∑
w=1

χ(−jw) |w〉 .

2 Computational problems: CSIDH

In this section, I will describe the mathematics underlying the cryptosystem
CSIDH, and fit the mathematics into the framework of known problems in
quantum computing. Choose a prime p and a supersingular curve E over Fp.
Then the endomorphism ring of E is the ring of integers in an iqf K. Let
Isog(E) denote the set of elliptic curves which are isogenous to E over Fp. It is
well-known that the class group Cl(K) acts freely and transitively on Isog(E).
For an ideal class I, denote this action as I ∗E. The security of CSIDH is based
on the problem of deducing I, given the elliptic curves E and I ∗ E.

Let A be an abelian group, and let s ∈ A be a secret element. Let f0, f1 :
A→ X be efficiently computable injective functions such that

f1(x) = f0(x+ s).

The Hidden Shift Problem is to find s.
It turns out the CSIDH problem above is an instance of the Hidden Shift

Problem. For let A = Cl(K), E′ = I ∗ E, and define fi : A→ Fp by

f0(J) = j(J ∗ E)

f1(J) = j(J ∗ E′).

Our secret element s is none other than I!

3 Kuperberg’s algorithm and collimation

Kuperberg in 2003 published an algorithm for solving the HSP over A = Z/NZ,
which he has since improved [Kup11]. This was adapted by Childs, Jao, and
Soukharev in 2010 to a quantum attack on CSIDH. (Well, not CSIDH itself, but
a related cryptosystem; their attack also applies to CSIDH.) The bottleneck, it

2

turns out, is computing ∗ efficiently. However, following Peikert [Pei19], we will
focus on the HSP part of the algorithm.

Suppose for convenience that N = 2n. Let χ : A → C be a primitive
character. The main point of Kuperberg’s algorithm is that it produces many
pairs (b, |ψ〉), where b ∈ A is random and

|ψ〉 = |0〉+ χ(bs) |1〉 .

Unfortunately, this is not enough to deduce s. Kuperberg takes many such |ψ〉
and collimates them; that is, he applies quantum operations to probabilistically
combine them. If

|ψ1〉 = |0〉+ χ(b1s) |1〉 and

|ψ2〉 = |0〉+ χ(b2s) |1〉

then Kuperberg showed that one can obtain a new state

|0〉+ χ(cs) |1〉

where c is either b1 ± b2, each with 50% probability. Iterating until one obtains
c = N/2, we have the state

|ϕ〉 = |0〉+ (−1)s |1〉 .

But observe that |0〉+ |1〉 , |0〉− |1〉 form an orthogonal basis for C2. Measuring
|ϕ〉 with respect to the normalized basis, we can deduce the parity of s, and
hence its last bit. We can then iterate with A = Z/(N/2)Z to find the next to
last bit of s, and so on.

4 Peikert’s improvements

Peikert adapted Kuperberg’s idea to detect most significant bits of s. The
algorithm takes as input Kuperberg’s oracle; that is, an oracle that produces
pairs

(b, |0〉+ χ(bs) |1〉).
Also as part of the input is a parameter t. The algorithm outputs the t most
significant bits of s.

The idea is to apply collimation to produce a state of the form

|ψ〉 =

T−1∑
j=0

χ(js) |j〉 ,

where T = 2t (or approximately 2t). We will show below how to obtain such a
state. For convenience assume that T | N . Applying the QFT with respect to
T , we then get

T−1∑
w=0

T−1∑
j=0

χ(j(s− wN/T)) |w〉 .

3

As w varies, most of the coefficients of |w〉 will be close to 0, since they will be
essentially equidistributed around the unit circle. The only situation where the
coefficient will be large is when s ≈ wN/T . This tells us approximately log T
bits of s. The condition T | N is not necessary, and in fact T > N is possible,
in which case we get s exactly.

4.1 Peikert’s collimation

The main idea for Peikert’s collimation is to take k states |ψi〉 from Kuperber-
berg’s oracle—say,

|ψi〉 = |0〉+ χ(bis) |1〉 .
Write bi as a function {0, 1} → Z/NZ via bi(0) = 0, bi(1) = bi. Let |ψ〉 = ⊗ |ψi〉.
If j ∈ {0, 1}k, let b(j) =

∑
bi(ji). Thus

|ψ〉 =
∑

χ(b(j)s) |j〉 .

(1) Restrict b values. Choose T . Let q : {0, 1}k → Z be defined by

q(j) = bb(j)/T c.

Measure |ψ〉 with respect to q. One obtains

|ψ〉 =
∑

χ(b(j)s) |j〉

where j varies over elements satisyfing b(j)÷T has a fixed quotient q0. We may
therefore factor out χ(q0T) from every term. Since |ψ〉 ∈ PN−1C , we can ignore
this factor and instead simply assume that 0 ≤ b(j) ≤ T − 1.

(2) Regularize. The measurement outputs q0 as well, and so we can compute
the list of j that appear in |ψ〉 above. Compute a set X of js for which b(j),
j ∈ X, attains every value between 0 and T−1 exactly once. If this is impossible
(say, if no value satisfies b(j) = T − 1), start over and recompute |ψ〉.

Let f be an indicator function for X; that is f(j) = 1 if j ∈ X, and f(j) = 0
otherwise. Measure |ψ〉 with respect to f . If we get 0, choose a new X disjoint
from the previous choice and try again. Otherwise, |ψ〉 is now of the form∑

j∈X

χ(b(j)s) |j〉 .

(3) Renumber. We have b : X → {0, 1, . . . , T − 1} is a bijection. We use b
to relabel the basis states, so that |ψ〉 now looks like

T−1∑
j=0

χ(js) |j〉 .

We can do this since the set X and the values of b on this set are known.
There are a couple of other computational tricks that Peikert uses, but I

omit them.

4

5 Kuperberg’s oracle

We now describe Kuperberg’s oracle; that is, given a hidden shift problem on
Z/NZ with shift a, how Kuperberg produces states of the form

|0〉+ χ(bs) |1〉 .

Let D = Z/NZ × {0, 1}. Let f0, f1 : Z/NZ → X be the hidden shift oracles;
that is, they are injective functions with f1(x) = f0(x+ s). Define

f : D → X

by f(a, i) = fi(a).
We work over CD, the free vector space on D, and its associated projective

space. We may start with the state

|ψ〉 =
∑

(a,i)∈D

|ai〉 .

We then measure this state with respect to f to obtain some x ∈ X and

|ψ〉 =
∑

f(a,i)=x

|ai〉 .

But the fi are injective, so the above equals

|a00〉+ |(a0 − s)1〉

for some a0. Now apply the QFT with respect to Z/NZ to obtain∑
w

χ(−a0w) |w0〉+
∑
w

χ(−a0w)χ(sw) |w1〉 .

Finally we measure w, obtaining some value b and the state

χ(−a0b) |b0〉+ χ(−a0b)χ(sb) |b1〉 .

Since we are in projective space, we may omit χ(−a0b). We will also forget the
first coordinate inside the |〉, and thus have the state

|0〉+ χ(sb) |1〉

as desired.

6 Childs-Jao-Soukharev

As mentioned earlier, the bottleneck in applying Kuperberg’s algorithm to at-
tacking CSIDH is computing the action of the class group Cl(K) on the isogeny
class Isog(E). We describe the approach of [CJS10].

5

The group action is as follows. For a given ideal class in Cl(K), let J be
an integral ideal representing it. Let m = Nm(J). Then there is some α ∈ OK
such that J is generated by m and α. Typically, J is represented by a quadratic
form, so it is not too difficult to compute both m and α. Any elliptic curve
C ∈ Isog(E) comes equipped with an action of OK , and so both m,α act on C.
Define

C[J] = C[m] ∩ C[α].

Then J ∗ C is defined to be C/C[J].
However, directly computing J ∗C is not efficient! The problem is that C[J]

has cardinality m, and if m is large, then computing the quotient C/C[J] is
inefficient. Instead, Childs-Jao-Soukharev proceed as follows.

Let π be the canonical quotient map

π : C → C/C[J] = J ∗ C,

First, compute prime ideals with small norm p1, . . . , pr such that their product
is in the ideal class of J . This is done by combining algorithms of Bernstein and
Seysen. Let C0 = C, and recursively compute

πi : Ci−1 → Ci := pi ∗ Ci−1.

Then we have π = πr ◦· · ·◦π1, and in particular Cr = J ∗C. While not precisely
efficient, it is shown that if GRH holds, then the algorithm to compute J ∗C is
subexponential in log p, where Fp is our base field.

References

[CJS10] Andrew M. Childs, David Jao, and Vladimir Soukharev. Construct-
ing elliptic curve isogenies in quantum subexponential time. 2010,
arXiv:1012.4019. 5

[Kup11] Greg Kuperberg. Another subexponential-time quantum algorithm for
the dihedral hidden subgroup problem. 2011, arXiv:1112.3333. 2

[Pei19] Chris Peikert. He gives c-sieves on the csidh. Cryptology ePrint
Archive, Report 2019/725, 2019. https://eprint.iacr.org/2019/

725. 3

6

https://eprint.iacr.org/2019/725
https://eprint.iacr.org/2019/725

	Basics of quantum computing
	Computational problems: CSIDH
	Kuperberg's algorithm and collimation
	Peikert's improvements
	Peikert's collimation

	Kuperberg's oracle
	Childs-Jao-Soukharev

