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The paper I will discuss covers a variety of mostly unsuccessful attacks on
the SIDH protocol. There are some ideas for future attacks, including open
questions.

1 SIDH protocol

SIDH is a key exchange protocol (Supersingular Isogeny Diffie-Hellman). The
set-up is as follows. Fix a large prime p and a supersingular curve E over Fp.
Choose large integers n,m, and choose points P1, P2, Q1, Q2 ∈ E such that
P1, P2 generate E[2n] and Q1, Q2 generate E[3m]. We want these points to be
rational over Fp2 ; by choosing p ≡ 1 (mod 2n3m), we can force this to be true.
The tuple (p,E, P1, P2, Q1, Q2) are made public.

To generate a key, Alice chooses a random integer a and computes the elliptic
curve EA = E/ 〈P1 + aP2〉. She computes the images QA,1, QA,2 of Q1, Q2 in
EA and publishes the triple EA, QA,1, QA,2. Bob similarly chooses random b,
EB = E/ 〈Q1 + bQ2〉, and the images PB,1, PB,2 of P1, P2 in EB . He publishes
EB , PA,1, PA,2. The shared key is the j-invariant of

EAB = EB/ 〈PB,1 + aPB,2〉 = EA/ 〈QA,1 + bQA,2〉 .

That is, EAB is the pushout

E //

��

EA

��
EB

// EAB

The security of the protocol depends on the difficulty of determining a given E
and EA. It turns out that as long as we can find some isogeny E → EA, we can
find a efficiently. Thus we pose the following problems:

Problem 1 (Supersingular Isogeny Problem). Given supersingular elliptic curves
E,E′ which are isogenous over Fp2 , find an isogeny between them.

Problem 2 (Supersingular Isogeny Problem with auxiliary points). Given su-
persingular elliptic curves E,E′ which are isogenous over Fp2 , and given Q1, Q2 ∈
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E and their respective images Q′
1, Q

′
2 ∈ E′ under some isogeny, find an isogeny

between them.

Certainly the second problem should be easier than the first, but it is difficult
to see this in practice.

2 Attacks: no auxiliary points

Graph attacks. For the Supersingular Isogeny Problem, an equivalent state-
ment is as follows. Let Γ be the graph whose vertices are isomorphism classes
of supersingular elliptic curves over Fp2 , and whose edges are isogenies, except
we identify an isogeny with its dual (so edges are undirected). Then given two
vertices lying in a connected component of Γ, we wish to find a path between
them. Typically we instead use the `-isogeny graph Γ(`), which has the same
vertex set, but now isogenies are those of degree `. (Of course, in our case ` = 2
or 3.) In fact, most attacks use this version of the problem, by implementing a
“meet-in-the-middle” algorithm. These attacks are O( d

√
p), where d = 4 (clas-

sical) or d = 6 (quantum, though the memory requirements in this case are
prohibitive).

Endomorphism rings. The (full) endomorphism ring of a supersingular curve
is a maximal order in a known quaternion algebra. It has been shown that if
we can compute the maximal order, even as an abstract ring, then we can solve
the isogeny problem. However, it has been shown that under certain assump-
tions, computing endomorphism rings is computationally equivalent to solving
the isogeny problem. One way to see this is to observe that the best method
for computing endomorphism rings uses the graph Γ. Specifically, one takes a
random walk from a vertex v0 and hopes to end up back at v0. Once this hap-
pens, the resulting loop yields an endomorphism of the corresponding elliptic
curve. If one repeats this enough time, one hopes to get a generating set for the
endomorphism ring.

Fp-spine. Let G(`) ⊂ Γ(`) be the full subgraph whose vertices are isomor-
phism classes of supersingular elliptic curves over Fp. Note that isogenies be-
tween them need not be Fp-rational. Then one can hope to find a path via G(`);
that is, given E,E′ ∈ Γ(`), we wish to find C,C ′ ∈ G(`) and paths E → C,
C → C ′, and C ′ → E′. The composition of these paths solves the isogeny
problem. This approach is fruitful only if the problems of

1. finding a path to G(`), and

2. finding paths inside G(`)

are both easier than directly solving the full isogeny problem. For the 1st
problem, there are no known methods. One idea is, for E ∈ Γ(`), to compute
an `-power isogeny between E and its quadratic twist and hope that it passes
through G(`); but the data suggests that this is not feasible in general.
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Delfs-Galbraith tackled the second problem. Their algorithm is, heuristi-
cally, Õ( 4

√
p).

Lifting. Deuring showed that if one fixes a pair (E,ϕ) where ϕ is an endo-
morphism of the elliptic curve E, then there is a canonical lift of the pair to the
appropriate p-adic ring. One can then base-extend to C and solve the isogeny
problem there. However, this process does not work if ϕ = [n], and we don’t
have a good way of finding a nontrivial endomorphism for a generic supersingu-
lar elliptic curve. Furthermore, lift computations typically must be done over a
high degree number field.

2.1 Weil restrictions

The following idea seems to be relatively unexplored, and Martindale-Panny list
several related open problems.

The main idea is to replace E/Fp2 with its Weil restriction W (E)/Fp. The
latter will be a principally polarized supersingular abelian surface. Let A =
W (E). Martindale-Panny assume that EndFp(A)⊗Q is the number field Q(π),
where π is the Frobenius endomorphism. Since we expect j(E) /∈ Fp, π will be
a nontrivial endomorphism of A.

We consider the isogeny graph of principally polarized supersingular abelian
surfaces. Isogenies between two such must be maximal isotropic with respect
to the Weil pairing, and so we consider the graph G` whose edges correspond
to (`, `) isogenies defined over Fp; that is, isogenies with kernel isomorphic to
Z/`× Z/`. Let L = (`1, . . . , `n) where the `i are distinct primes, and let GL =
∪`iG`i ; that is, two surfaces are adjacent if and only if they are adjacent in one
of the G`i .

Given E,E′ supersingular, let A = W (E), A′ = W (E′). We would like to
solve the isogeny problem for A,A′ in GL for some choice of L. A necessary
condition to do so is that A,A′ must lie in the same connected component of
GL.

Conjecture 2.1. For most `, G` is a union of cycles of length O(
√
p).

The idea is that under our assumption that End(A) ∼= Q(π), the isogeny
graph G` should resemble the isogeny graph of ordinary elliptic curves; that is,
an isogeny volcano. The volcano has a cycle of the prescribed length (the crater)
and some trees attached to vertices of the crater. We would like to show that
there are no such trees. If B were an abelian surface corresponding to a vertex
on one of these trees, then End(B) ⊂ End(A), and the index would be divisible
by `. For most `, [End(A) : Z[π]] will be coprime to `. But Z[π] ⊂ End(B), so
there should be no such B.

If the conjecture is true, then we almost certainly need to pick L large in
order for A,A′ to lie in the same component.

Question 1. In order for the probability that A,A′ lie in the same connected
component of GL to be high, how large should L be?
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Ideally, the number of primes should only need to be polynomial in log p.
We could also implement the Delfs-Galbraith plan; that is, find a path to an

Fp-curve.

Question 2. For L small, given A, is there a surface of the form W (E0), with
E0 an elliptic curve defined over Fp, in the same connected component as A?

In order to utilize the graph to solve the isogeny problem, we would likely
need to be able to compute (`, `)-isogenies.

Question 3. What is the complexity of computing (`, `)-isogenies?

Currently, we only know how to compute (2, 2)-isogenies efficiently.

3 Attacks: auxiliary points

Interpolation. Recall that in SIDH, we not only know E,E′ isogenous, we
also know a basis for E[m] for some m coprime to the degree of an isogeny ϕ :
E → E′, and we know the image of the basis under that isogeny. Furthermore,
using the fact that E is supersingular, one can show that ϕ is of the form

ϕ(x, y) = (f(x), c0yf
′(x))

for some rational map f over Fp2 . We could use our auxiliary point data to
deduce f . However, f has a very long description, so this is likely inefficient.

Tate modules. Perhaps we can lift the action on m to a map T`(E)→ T`(E
′)

for some ` | m (` = 3 in practice). Petit has an attack that does this, but it is
only feasible when (say) Alice’s subgroup is much smaller than Bob’s.
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