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5.3 Even though we hadn’t done the Residue Theorem yet, now that we have it,
I will use it where appropriate.

For (f), we rewrite this as

iz

i3
= −i · iz = −i · ez log i = −ieiz·π/2.

This is an entire function, and hence the integral is zero.

For (h), the function is holomorphic except at −4 and ±i. Since −4 is outside
the circle, it does not impact the integral. Note that ±i are simple zeroes of
the denominator. Writing our function as

1
(z+4)(z+i)

z− i
,

we apply Prop 9.14 to see that the residue at i is 1
(i+4)(2i)

= − 1
34 (1+ 4i). By

similar reasoning, the residue at −i is − 1
34 (1− 4i). The sum of the residues

is − 1
17 , and so the value of the integral is −2πi

17 .

For (i), the integrand has a simple pole at 2 and a double pole at 1. Via Prop
9.14, the residue at 2 is

exp(4)/(2− 1)2 = e4.

For the residue at 1, I will use Prop 9.11b with n = 2. We first compute the
derivative of exp(z)/(z− 2):

d

dz

exp(z)
(z− 2)

=
exp(z)(z− 2) − exp(z)

(z− 2)2

=
z exp(z) − 3 exp(z)

(z− 2)2
.

Then we plug in z = 1 to get

exp(1) − 3 exp(1)
(1− 2)2

= −2e.

The sum of the residues is e4 − 2e. The Residue Theorem now tells us the
value of the integral is 2πi(e4 − 2e).

5.10 As discussed in the hint, we let L = limz→∞ f(z), set ε = 1, and so have
R > 0 such that |z| > R implies |f(z) − L| < 1. This implies that for |z| > R,
|f(z)| < |L| + 1. Since f is continuous, so is |f|. Now D[0,R] is a compact
(closed and bounded), and on such sets, continuous functions attain their
maximum. In particular, |f| attains its maximum, call it K, on D[0,R]. Let
M = max(K, |L|+ 1). It follows that for all z, |f(z)| ≤ M, proving the claim.
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7.20 For (a), let ε > 0. By the uniformity, ∃N such that n ≥ N implies |fn(z)| < ε
for all z ∈ G; in particular, this holds for z = zn. In other words, |fn(zn)| < ε
for n ≥ N. The claim follows.

For (b), we have fn(e
−1/n) = e−1 which does not go to zero as n → ∞. By

(a), the sequence fn does not converge uniformly to 0.

7.22 Both (a) and (b) converges on D[0, 1], by Prop 7.7a; for (a), c = |1/z| when
z ̸= 0 and p(n) = n, while for (b), c is the same but p(n) = 1

n .

(a) diverges for |z| ≥ 1, since then |nzn| ≥ n → ∞. Thus the sequence
converges to 0 on D[0, 1]. The convergence is not uniform; using 7.20 with
zn = e−1/n, we get fn(zn) = ne−1 → ∞. The conclusion follows.

(b) diverges for |z| > 1, but for |z| = 1, the sequence converges to 0: |z|n/n =
1
n → 0. The convergence on D[0, 1] is uniform. Given ε > 0, choose N so
that 1/N < ε. Then for n ≥ N, on the closed disk we have

|zn/n| = |z|n/n
≤ 1n/N
= 1/N
< ε.

(c) converges on the entire region. Certainly we have convergence at 0. If
z ̸= 0, choose N so that N|z| > 1. Then for n ≥ N,

|1+nz| ≥ n|z|− 1 → ∞
since |z| > 0. This means that | 1

1+nz | → 0 in the region, except for z = 0.
Notice that the limit at z = 0 is 1, so the limit function is discontinuous at
z = 0. Therefore the convergence is not uniform.
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