HW Selected Solutions Prof. Shahed Sharif

5.3 Even though we hadn't done the Residue Theorem yet, now that we have it, I will use it where appropriate.

For (f), we rewrite this as

$$\frac{\mathrm{i}^z}{\mathrm{i}^3} = -\mathrm{i}\cdot\mathrm{i}^z = -\mathrm{i}\cdot\mathrm{e}^{z\log\mathrm{i}} = -\mathrm{i}\mathrm{e}^{\mathrm{i}z\cdot\pi/2}.$$

This is an entire function, and hence the integral is zero.

For (h), the function is holomorphic except at -4 and $\pm i$. Since -4 is outside the circle, it does not impact the integral. Note that $\pm i$ are simple zeroes of the denominator. Writing our function as

$$\frac{\frac{1}{(z+4)(z+i)}}{z-i}$$

we apply Prop 9.14 to see that the residue at i is $\frac{1}{(i+4)(2i)} = -\frac{1}{34}(1+4i)$. By similar reasoning, the residue at -i is $-\frac{1}{34}(1-4i)$. The sum of the residues is $-\frac{1}{17}$, and so the value of the integral is $-\frac{2\pi i}{17}$.

For (i), the integrand has a simple pole at 2 and a double pole at 1. Via Prop 9.14, the residue at 2 is

$$\exp(4)/(2-1)^2 = e^4$$

For the residue at 1, I will use Prop 9.11b with n = 2. We first compute the derivative of $\exp(z)/(z-2)$:

$$\frac{d}{dz}\frac{\exp(z)}{(z-2)} = \frac{\exp(z)(z-2) - \exp(z)}{(z-2)^2} = \frac{z\exp(z) - 3\exp(z)}{(z-2)^2}.$$

Then we plug in z = 1 to get

$$\frac{\exp(1) - 3\exp(1)}{(1-2)^2} = -2e.$$

The sum of the residues is $e^4 - 2e$. The Residue Theorem now tells us the value of the integral is $2\pi i(e^4 - 2e)$.

5.10 As discussed in the hint, we let $L = \lim_{z\to\infty} f(z)$, set $\varepsilon = 1$, and so have R > 0 such that |z| > R implies |f(z) - L| < 1. This implies that for |z| > R, |f(z)| < |L| + 1. Since f is continuous, so is |f|. Now $\overline{D}[0, R]$ is a compact (closed and bounded), and on such sets, continuous functions attain their maximum. In particular, |f| attains its maximum, call it K, on $\overline{D}[0, R]$. Let $M = \max(K, |L| + 1)$. It follows that for all z, $|f(z)| \le M$, proving the claim.

7.20 For (a), let $\varepsilon > 0$. By the uniformity, $\exists N$ such that $n \ge N$ implies $|f_n(z)| < \varepsilon$ for all $z \in G$; in particular, this holds for $z = z_n$. In other words, $|f_n(z_n)| < \varepsilon$ for $n \ge N$. The claim follows.

For (b), we have $f_n(e^{-1/n}) = e^{-1}$ which does not go to zero as $n \to \infty$. By (a), the sequence f_n does not converge uniformly to 0.

7.22 Both (a) and (b) converges on D[0, 1], by Prop 7.7a; for (a), c = |1/z| when $z \neq 0$ and p(n) = n, while for (b), c is the same but $p(n) = \frac{1}{n}$.

(a) diverges for $|z| \ge 1$, since then $|nz^n| \ge n \to \infty$. Thus the sequence converges to 0 on D[0,1]. The convergence is not uniform; using 7.20 with $z_n = e^{-1/n}$, we get $f_n(z_n) = ne^{-1} \to \infty$. The conclusion follows.

(b) diverges for |z| > 1, but for |z| = 1, the sequence converges to 0: $|z|^n / n = \frac{1}{n} \rightarrow 0$. The convergence on $\overline{D}[0, 1]$ is uniform. Given $\varepsilon > 0$, choose N so that $1/N < \varepsilon$. Then for $n \ge N$, on the closed disk we have

$$|z^{n}/n| = |z|^{n}/n$$
$$\leq 1^{n}/N$$
$$= 1/N$$
$$< \varepsilon.$$

(c) converges on the entire region. Certainly we have convergence at 0. If $z \neq 0$, choose N so that N|z| > 1. Then for $n \ge N$,

$$|1 + nz| \ge n|z| - 1 \to \infty$$

since |z| > 0. This means that $\left|\frac{1}{1+nz}\right| \to 0$ in the region, except for z = 0. Notice that the limit at z = 0 is 1, so the limit function is discontinuous at z = 0. Therefore the convergence is not uniform.