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The Laplace equation is not difficult to verify. The tricky part is showing
that you can take arbitrarily many partials, and that these partials are con-
tinuous. For this, we have to use the fact that holomorphic functions have
arbitrarily many derivatives.

To that end, let u be harmonic at a point zy, so that it satisfies the Laplace
equation and has continuous 2nd order partials in a disk D around z. Since
disks are simply connected, u is the real part of a holomorphic function f
on D; say f(z) =u(x,y) +1iv(x,y). By Corollary 5.5, all partials of f exist and
are continuous, and hence the same holds of u.

Finally, since the partials are continuous, they commute, and in particular
they commute with the Laplace operator
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In other words, if & is a partial differentiation operator,
A(Z2(u)) = Z(Au) = 2(0) = 0.
Therefore &2(u) is harmonic.

There are of course many examples, but x? is a relatively simple one: p(x) =
x is harmonic since pxx = pyy = 0, butp-p = x? is not harmonic since
Ax?=2+4+0=2#0.

This can be done directly using the Laplace equation, but it’s ugly. Instead,
let z = x + 1y and let p(x,y) = In|f(x,y)|. Let zog € G and wy = f(zp). As
wo # 0, d¢ > 0 such that 0 ¢ D[wg,¢]. But f is continuous, so 38 such
that if z € Dz, 8], then f(z) € D[wy, €]. This is significant because there is a
branch of the logarithm Log holomorphic on D[wy, €], so on D[z, 3], Log(f)
is holomorphic. But the real part of Log(f) is In|f| (only the imaginary part
changes if we change the branch). Therefore at zp, In|f| is harmonic. But
this holds for all zy € G, and so the claim follows.

(The subtleties with the € and & are required because if we stray too far from
zo, then we may have to change the branch. For example, if f(z) = z and
G = C —{0}, then as long as z is not on the negative real axis, we can use the
principal branch. But if z is on the negative real axis, we have to switch to a
different branch.)
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