HW 8 Selected Solutions Prof. Shahed Sharif

5.1ab For (a), this is $\pi i f''(0)$ where $f(z) = \exp(z^2)$, and since $f''(z) = 2 \exp(z^2) + 4z^2 \exp(z^2)$, we get $\pi i f''(0) = 2\pi i$.

For (b) this is $2\pi i g'(\pi i)$ where $g(z) = \exp(3z)$, and thus the answer is $6\pi i \exp(3\pi i) = -6\pi i$.

5.13 Let $w \in \mathbb{C}$, r > 0, and $\gamma = \mathbb{C}[w, r]$. Then by the Cauchy Integral Formula,

$$\begin{aligned} |\mathbf{f}'(w)| &= \frac{1}{2\pi} \left| \int_{\gamma} \frac{\mathbf{f}(z)}{(z-w)^2} \, \mathrm{d}z \right| \\ &\leq \frac{1}{2\pi} \max_{z \in \gamma} \frac{|\mathbf{f}(z)|}{|z-w|^2} \operatorname{len}(\gamma) \\ &\leq \operatorname{r} \max_{z \in \gamma} \frac{\sqrt{|z|}}{\mathbf{r}^2} \\ &= \frac{1}{r} \sqrt{|w| + \mathbf{r}}. \end{aligned}$$

Now we let $r \to \infty$. The last expression above goes to 0, and hence |f'(w)| = 0, so f' = 0, and hence f is a constant. But $|f(0)| \le \sqrt{0} = 0$, and so f(0) = 0. Therefore f is identically zero.

5.18 Let R > 2. Let γ_1 be the quarter-circular contour of radius R shown in blue below, and γ_2 to similar contour shown in purple. Let $\gamma = \gamma_1 + \gamma_2$; this will be a half-circular path. Finally, let σ be the curved part of γ ; that is, the image of Re^{it} for $0 \le t \le \pi$.

First, we have that

$$\int_{\gamma} \frac{dz}{z^4 + 1} = \int_{-R}^{R} \frac{dx}{x^4 + 1} + \int_{\sigma} \frac{dz}{z^4 + 1}$$

For the second integral,

$$\left| \int_{\sigma} \frac{\mathrm{d}z}{z^4 + 1} \right| \le \max_{z \in \sigma} \frac{1}{|z^4 + 1|} \operatorname{len}(\sigma)$$
$$\le \frac{2\pi R}{R^4 - 1}.$$

As $R \to \infty$, this goes to 0. Therefore

$$\lim_{R\to\infty}\int_{\gamma}\frac{\mathrm{d}z}{z^4+1}=\int_{-\infty}^{\infty}\frac{\mathrm{d}x}{x^4+1}.$$

It remains to evaluate the contour integral. We have

$$\int_{\gamma} \frac{\mathrm{d}z}{z^4 + 1} = \int_{\gamma_1} \frac{\mathrm{d}z}{z^4 + 1} + \int_{\gamma_2} \frac{\mathrm{d}z}{z^4 + 1}$$

Let $\omega = e^{i\pi/4}$. The roots of $z^4 + 1$ are $\omega, \omega^3, \omega^5$, and ω^7 . Thus

$$\frac{1}{z^4 + 1} = \frac{\frac{1}{(z - \omega^3)(z - \omega^5)(z - \omega^7)}}{z - \omega} = \frac{\frac{1}{(z - \omega)(z - \omega^5)(z - \omega^7)}}{z - \omega^3}$$

As ω is in the first quadrant and none of the others are, for γ_1 we can use the second expression above. As ω^3 is in the second quadrant and none of the others are, for γ_2 we can use the third expression above. Thus by the Cauchy Integral Formula,

$$\int_{\gamma} \frac{dz}{z^4 + 1} = \int_{\gamma_1} \frac{dz}{z^4 + 1} + \int_{\gamma_2} \frac{dz}{z^4 + 1}$$
$$= \frac{2\pi i}{(\omega - \omega^3)(\omega - \omega^5)(\omega - \omega^7)} + \frac{2\pi i}{(\omega^3 - \omega)(\omega^3 - \omega^5)(\omega^3 - \omega^7)}$$

Some careful algebra shows that this equals $\frac{\pi}{\sqrt{2}}$.