HW 8 Selected Solutions
 Prof. Shahed Sharif

5.1ab For (a), this is $\pi i f^{\prime \prime}(0)$ where $f(z)=\exp \left(z^{2}\right)$, and since $f^{\prime \prime}(z)=2 \exp \left(z^{2}\right)+$ $4 z^{2} \exp \left(z^{2}\right)$, we get $\pi i f^{\prime \prime}(0)=2 \pi i$.
For (b) this is $2 \pi i g^{\prime}(\pi i)$ where $g(z)=\exp (3 z)$, and thus the answer is $6 \pi i \exp (3 \pi i)=-6 \pi i$.
5.13 Let $w \in \mathbb{C}, r>0$, and $\gamma=\mathbb{C}[w, r]$. Then by the Cauchy Integral Formula,

$$
\begin{aligned}
\left|f^{\prime}(w)\right| & =\frac{1}{2 \pi}\left|\int_{\gamma} \frac{f(z)}{(z-w)^{2}} \mathrm{~d} z\right| \\
& \leq \frac{1}{2 \pi} \max _{z \in \mathcal{Y}} \frac{|f(z)|}{|z-w|^{2}} \operatorname{len}(\gamma) \\
& \leq r \max _{z \in \mathcal{Y}} \frac{\sqrt{|z|}}{r^{2}} \\
& =\frac{1}{r} \sqrt{|w|+r} .
\end{aligned}
$$

Now we let $r \rightarrow \infty$. The last expression above goes to 0 , and hence $\left|f^{\prime}(w)\right|=$ 0 , so $f^{\prime}=0$, and hence f is a constant. But $|f(0)| \leq \sqrt{0}=0$, and so $f(0)=0$. Therefore f is identically zero.
5.18 Let $\mathrm{R}>2$. Let γ_{1} be the quarter-circular contour of radius R shown in blue below, and γ_{2} to similar contour shown in purple. Let $\gamma=\gamma_{1}+\gamma_{2}$; this will be a half-circular path. Finally, let σ be the curved part of γ; that is, the image of $\operatorname{Re}^{i t}$ for $0 \leq t \leq \pi$.

First, we have that

$$
\int_{\gamma} \frac{d z}{z^{4}+1}=\int_{-R}^{R} \frac{d x}{x^{4}+1}+\int_{\sigma} \frac{d z}{z^{4}+1}
$$

For the second integral,

$$
\begin{aligned}
& \left|\int_{\sigma} \frac{\mathrm{d} z}{z^{4}+1}\right| \leq \max _{z \in \sigma} \frac{1}{\left|z^{4}+1\right|} \operatorname{len}(\sigma) \\
& \quad \leq \frac{2 \pi \mathrm{R}}{\mathrm{R}^{4}-1}
\end{aligned}
$$

As $R \rightarrow \infty$, this goes to 0 . Therefore

$$
\lim _{\mathrm{R} \rightarrow \infty} \int_{\gamma} \frac{\mathrm{d} z}{z^{4}+1}=\int_{-\infty}^{\infty} \frac{\mathrm{dx}}{x^{4}+1}
$$

It remains to evaluate the contour integral. We have

$$
\int_{\gamma} \frac{\mathrm{d} z}{z^{4}+1}=\int_{\gamma_{1}} \frac{\mathrm{~d} z}{z^{4}+1}+\int_{\gamma_{2}} \frac{\mathrm{~d} z}{z^{4}+1}
$$

Let $\omega=e^{i \pi / 4}$. The roots of $z^{4}+1$ are $\omega, \omega^{3}, \omega^{5}$, and ω^{7}. Thus

$$
\frac{1}{z^{4}+1}=\frac{\frac{1}{\left(z-\omega^{3}\right)\left(z-\omega^{5}\right)\left(z-\omega^{7}\right)}}{z-\omega}=\frac{\frac{1}{(z-\omega)\left(z-\omega^{5}\right)\left(z-\omega^{7}\right)}}{z-\omega^{3}} .
$$

As ω is in the first quadrant and none of the others are, for γ_{1} we can use the second expression above. As ω^{3} is in the second quadrant and none of the others are, for γ_{2} we can use the third expression above. Thus by the Cauchy Integral Formula,

$$
\begin{aligned}
\int_{\gamma} \frac{\mathrm{d} z}{z^{4}+1} & =\int_{\gamma_{1}} \frac{\mathrm{~d} z}{z^{4}+1}+\int_{\gamma_{2}} \frac{\mathrm{~d} z}{z^{4}+1} \\
& =\frac{2 \pi i}{\left(\omega-\omega^{3}\right)\left(\omega-\omega^{5}\right)\left(\omega-\omega^{7}\right)}+\frac{2 \pi i}{\left(\omega^{3}-\omega\right)\left(\omega^{3}-\omega^{5}\right)\left(\omega^{3}-\omega^{7}\right)}
\end{aligned}
$$

Some careful algebra shows that this equals $\frac{\pi}{\sqrt{2}}$.

