HW 7 Selected Solutions Prof. Shahed Sharif

4.23 For reflexivity, let $\gamma(t)$ be a closed path in G. Let $h(s,t) = \gamma(t)$. Since γ is continuous, so is h. Also, $\gamma \subset G$, so the image of h lies in G. Clearly $h(t,0) = h(t,1) = \gamma(t)$. Finally, $h(0,s) = \gamma(0) = \gamma(1) = h(1,s)$ for all s. Thus $\gamma \sim_G \gamma$.

For symmetry, let $\gamma_0 \sim_G \gamma_1$, so there exists a G-homotopy h(s, t) between the two. Let H(t, s) = h(t, 1 - s). The function H is continuous because h and $(t, s) \mapsto (t, 1 - s)$ is continuous, and the image of H is the same as that of h and hence lies in G. Finally, $H(t, 0) = h(t, 1) = \gamma_1(t)$, H(t, 1) = $h(t, 0) = \gamma_0(t)$, and H(0, s) = h(0, 1 - s) = h(1, 1 - s) = H(1, s). Thus H gives a homotopy in the other direction; in other words, $\gamma_1 \sim_G \gamma_0$.

For transitivity, suppose $\gamma_0 \sim_G \gamma_1$ and $\gamma_1 \sim_G \gamma_2$. That means there exist homotopies h_0 between γ_0 and γ_1 , and h_1 between γ_1 and γ_2 . Define a new homotopy

$$h(t,s) = \begin{cases} h_0(t,2s) & 0 \le s \le \frac{1}{2} \\ h_1(t,2s-1) & \frac{1}{2} < s \le 1. \end{cases}$$

The image of both h_0 and h_1 lies in G, so the same is true of the image of h. Continuity is only unclear at $s = \frac{1}{2}$. But observe that

$$h\left(t,\frac{1}{2}\right) = h_0(t,1) = \gamma_1(t) = h_1(t,0),$$

and that $\lim_{(s,t)\to(1/2,t_0)} h(t,s) = \lim_{(s,t)\to(0,t_0)} h_1(t,s) = h_1(t_0,0)$ for all $t_0 \in [0,1]$. Thus h is continuous. Finally, we check the equalities necessary to be a homotopy:

$$\begin{split} H(t,0) &= h_0(t,0) = \gamma_0(t) \\ H(t,1) &= h_1(t,1) = \gamma_2(t) \\ H(0,s) &= h_i(0,2s-i) = h_i(1,2s-i) = H(1,s) \text{ for } i = 0,1. \end{split}$$

4.25 For (a), I will show that a closed path is homotopic to the constant path $\sigma(t) = 0$; that is, the origin. Given a closed path $\gamma(t)$, let $h(t,s) = s\gamma(t)$. Clearly this is continuous. We have h(t, 0) = 0, while $h(t, 1) = \gamma(t)$. Finally, $h(0, s) = s\gamma(0) = s\gamma(1) = h(1, s)$. It follows that $0 \sim_{\mathbb{C}} \gamma$, and by symmetry the result follows. (If you didn't want to use symmetry, you could also use $(1 - s)\gamma(t)$; but I like my expression better!)

For (b), given γ_0 , γ_1 , we have by (a) that both are C-homotopic to 0, but by transitivity, this means that they are C-homotopic to each other.

4.29 Note that $z^6 - 1 = (z^3 - 1)(z^3 + 1)$, so the roots of $z^3 + 1$ are a subset of the roots of $z^6 - 1$. These latter roots are sixth roots of unity, which lie

on the unit circle. Therefore if r>1, then all roots of z^3+1 lie inside C[0,r]. In particular, letting G be $\mathbb C$ with the three roots of z^3+1 removed, if $r_0,r_1>1$, then $C[0,r_0]\sim_G C[0,r_1]$. (If you want a specific homotopy, do $\gamma_0(t)=r_0e^{2\pi i\,t},\gamma_1(t)=r_1e^{2\pi i\,t}$, and

$$h(t,s) = ((1-s)r_0 + sr_1)e^{2\pi i t}.$$

But I think this is overkill.)

As our integrand is holomorphic on G, Cauchy's Theorem shows that

$$\int_{C[0,2]} \frac{\mathrm{d}z}{z^3 + 1} = \int_{C[0,r]} \frac{\mathrm{d}z}{z^3 + 1}$$

for any r > 1.

Next, we obtain a bound. On C[0,r], $|z^3 + 1| \ge |z|^3 - 1 = r^3 - 1$. Also, $len(C[0,r]) = 2\pi r$. Thus

$$\left|\int_{C[0,r]} \frac{\mathrm{d}z}{z^3+1}\right| \leq \frac{1}{r^3-1} \cdot 2\pi r.$$

But as $r\to\infty,$ this expression goes to 0. It follows that the original integral has value 0.