HW 7 Selected Solutions
 Prof. Shahed Sharif

4.23 For reflexivity, let $\gamma(\mathrm{t})$ be a closed path in G. Let $h(\mathrm{~s}, \mathrm{t})=\gamma(\mathrm{t})$. Since γ is continuous, so is h. Also, $\gamma \subset \mathrm{G}$, so the image of h lies in G. Clearly $h(t, 0)=h(t, 1)=\gamma(t)$. Finally, $h(0, s)=\gamma(0)=\gamma(1)=h(1, s)$ for all s. Thus $\gamma \sim \mathrm{G} \gamma$.
For symmetry, let $\gamma_{0} \sim_{G} \gamma_{1}$, so there exists a G-homotopy $h(s, t)$ between the two. Let $H(t, s)=h(t, 1-s)$. The function H is continuous because h and $(t, s) \mapsto(t, 1-s)$ is continuous, and the image of H is the same as that of h and hence lies in G. Finally, $H(t, 0)=h(t, 1)=\gamma_{1}(t), H(t, 1)=$ $h(t, 0)=\gamma_{0}(t)$, and $H(0, s)=h(0,1-s)=h(1,1-s)=H(1, s)$. Thus H gives a homotopy in the other direction; in other words, $\gamma_{1} \sim_{G} \gamma_{0}$.
For transitivity, suppose $\gamma_{0} \sim_{G} \gamma_{1}$ and $\gamma_{1} \sim_{G} \gamma_{2}$. That means there exist homotopies h_{0} between γ_{0} and γ_{1}, and h_{1} between γ_{1} and γ_{2}. Define a new homotopy

$$
h(t, s)= \begin{cases}h_{0}(t, 2 s) & 0 \leq s \leq \frac{1}{2} \\ h_{1}(t, 2 s-1) & \frac{1}{2}<s \leq 1\end{cases}
$$

The image of both h_{0} and h_{1} lies in G, so the same is true of the image of h. Continuity is only unclear at $s=\frac{1}{2}$. But observe that

$$
h\left(t, \frac{1}{2}\right)=h_{0}(t, 1)=\gamma_{1}(t)=h_{1}(t, 0)
$$

and that $\lim _{(s, t) \rightarrow\left(1 / 2, t_{0}\right)} h(t, s)=\lim _{(s, t) \rightarrow\left(0, t_{0}\right)} h_{1}(t, s)=h_{1}\left(t_{0}, 0\right)$ for all $t_{0} \in[0,1]$. Thus h is continuous. Finally, we check the equalities necessary to be a homotopy:

$$
\begin{aligned}
& \mathrm{H}(\mathrm{t}, 0)=\mathrm{h}_{0}(\mathrm{t}, 0)=\gamma_{0}(\mathrm{t}) \\
& \mathrm{H}(\mathrm{t}, 1)=\mathrm{h}_{1}(\mathrm{t}, 1)=\gamma_{2}(\mathrm{t}) \\
& \mathrm{H}(0, \mathrm{~s})=\mathrm{h}_{\mathfrak{i}}(0,2 \mathrm{~s}-\mathrm{i})=\mathrm{h}_{\mathfrak{i}}(1,2 \mathrm{~s}-\mathrm{i})=\mathrm{H}(1, \mathrm{~s}) \text { for } \mathfrak{i}=0,1 .
\end{aligned}
$$

4.25 For (a), I will show that a closed path is homotopic to the constant path $\sigma(t)=0$; that is, the origin. Given a closed path $\gamma(t)$, let $h(t, s)=s \gamma(t)$. Clearly this is continuous. We have $h(t, 0)=0$, while $h(t, 1)=\gamma(t)$. Finally, $h(0, s)=s \gamma(0)=s \gamma(1)=h(1, s)$. It follows that $0 \sim_{C} \gamma$, and by symmetry the result follows. (If you didn't want to use symmetry, you could also use $(1-s) \gamma(t)$; but I like my expression better!)
For (b), given γ_{0}, γ_{1}, we have by (a) that both are \mathbb{C}-homotopic to 0 , but by transitivity, this means that they are \mathbb{C}-homotopic to each other.
4.29 Note that $z^{6}-1=\left(z^{3}-1\right)\left(z^{3}+1\right)$, so the roots of $z^{3}+1$ are a subset of the roots of $z^{6}-1$. These latter roots are sixth roots of unity, which lie
on the unit circle. Therefore if $r>1$, then all roots of $z^{3}+1$ lie inside $C[0, r]$. In particular, letting G be \mathbb{C} with the three roots of $z^{3}+1$ removed, if $r_{0}, r_{1}>1$, then $C\left[0, r_{0}\right] \sim_{G} C\left[0, r_{1}\right]$. (If you want a specific homotopy, do $\gamma_{0}(t)=r_{0} e^{2 \pi i t}, \gamma_{1}(t)=r_{1} e^{2 \pi i t}$, and

$$
h(t, s)=\left((1-s) r_{0}+s r_{1}\right) e^{2 \pi i t}
$$

But I think this is overkill.)
As our integrand is holomorphic on G, Cauchy's Theorem shows that

$$
\int_{C[0,2]} \frac{d z}{z^{3}+1}=\int_{C[0, r]} \frac{d z}{z^{3}+1}
$$

for any $r>1$.
Next, we obtain a bound. On $C[0, r],\left|z^{3}+1\right| \geq|z|^{3}-1=r^{3}-1$. Also, $\operatorname{len}(C[0, r])=2 \pi r$. Thus

$$
\left|\int_{C[0, r]} \frac{\mathrm{d} z}{z^{3}+1}\right| \leq \frac{1}{\mathrm{r}^{3}-1} \cdot 2 \pi \mathrm{r}
$$

But as $r \rightarrow \infty$, this expression goes to 0 . It follows that the original integral has value 0 .

