HW 5 Selected Solutions
 Prof. Shahed Sharif

3.32 If $\sin (z)=0$, then $2 i \sin (z)=0$, so

$$
\exp (i z)-\exp (-i z)=0
$$

This means that $\exp (i z)=\exp (-i z)$. In particular, we must have $|\exp (i z)|=$ $|\exp (-i z)|$. Write $z=x+i y$. Then

$$
\begin{aligned}
|\exp (-i z)| & =|\exp (-i x+y)| \\
& =\left|e^{y}\right| \\
& =e^{y} .
\end{aligned}
$$

Similarly, $|\exp (i z)|=e^{-y}$. Thus $e^{y}=e^{-y}$. Since e^{t} as a function $\mathbb{R} \rightarrow \mathbb{R}$ is injective, we must have $y=-y$, or $y=0$. Therefore z is real.
As $\sin (z)$ agrees with the usual sine function when z is real, the rest of the problem follows.
3.41 (a) -1 (you can write $-1+0 i$, but that is unnecessary)
(b) e^{π}
(c) We did this in class!
(d) $\sin \mathfrak{i}=\frac{1}{2 i}\left(\exp \left(\mathfrak{i}^{2}\right)-\exp \left(-\mathfrak{i}^{2}\right)\right)=\frac{1}{2 i}\left(e^{-1}-e\right)=\frac{\mathfrak{i}}{2}\left(e-e^{-1}\right)$. This is a purely imaginary number, so when we exponentiate, we get

$$
\cos \left(\frac{e-e^{-1}}{2}\right)+i \sin \left(\frac{e-e^{-1}}{2}\right)
$$

(e) \log is a right inverse for exp, so we get $3+4 i$
(f) This is $\exp \left(\frac{1}{2} \log (1+i)\right)$. We have $|1+i|=\sqrt{2}$ and $\operatorname{Arg}(1+i)=\frac{\pi}{4}$, so

$$
\frac{1}{2} \log (1+i)=\frac{1}{2} \ln (\sqrt{2})+i \frac{\pi}{8}=\ln 2^{1 / 4}+i \frac{\pi}{8}
$$

Finally, we exponentiate to obtain

$$
2^{1 / 4} \cos \frac{\pi}{8}+i 2^{1 / 4} \sin \frac{\pi}{8}
$$

Explicit formulas for the cos and sin can be obtained using half-angle formulas, but that isn't necessary.
(g) $\sqrt{3}-\mathrm{i} \sqrt{3}$ (You're not missing anything! The point is that $\sqrt{ }$ has a specific meaning for real numbers.)
(h) We have $\frac{\mathfrak{i}+1}{\sqrt{2}}=e^{\mathfrak{i} \pi / 4}$, so taking to the 4 th yields $e^{i \pi}=-1$. (Note 3.51 which says for integer powers, we don't have to worry about branches of the logarithm.)
3.51 Suppose that b is an integer. Two branches of \log differ by an integer multiple of $2 \pi i$; say we have that $\log a$ could be the values z_{0} and $z_{0}+2 \pi i k$ with $k \in \mathbb{Z}$. Then

$$
\begin{aligned}
\exp \left(\mathrm{b}\left(z_{0}+2 \pi \mathrm{ik}\right)\right) & =\exp \left(\mathrm{b} z_{0}+2 \pi \mathrm{ibk}\right) \\
& =\exp \left(\mathrm{b} z_{0}\right) \cdot \exp (2 \pi \mathrm{ibk}) \\
& =\exp \left(\mathrm{b} z_{0}\right) \cdot(\exp (2 \pi \mathrm{i}))^{\mathrm{bk}} \\
& =\exp \left(\mathrm{b} z_{0}\right) \cdot(1)^{\mathrm{bk}} \\
& =\exp \left(\mathrm{b} z_{0}\right) .
\end{aligned}
$$

Therefore in this case, the particular branch of \log makes no difference to the value. Now suppose b is not an integer. Write $b=b_{0}+\varepsilon$, where $b_{0}=\lfloor b\rfloor$ and $\varepsilon=\mathrm{b}-\mathrm{b}_{0}$ is the fractional part; in particular, $0<\varepsilon<1$. We get

$$
\begin{aligned}
\exp \left(\mathrm{b}\left(z_{0}+2 \pi i k\right)\right) & =\exp \left(\mathrm{b} z_{0}\right) \cdot \exp (2 \pi i b k) \\
& =\exp \left(\mathrm{b} z_{0}\right) \cdot \exp \left(2 \pi i b_{0} k+2 \pi i k \varepsilon\right) \\
& =\exp \left(b z_{0}\right) \cdot\left(\exp (2 \pi i)^{b_{0} k}\right) \cdot \exp (2 \pi i k \varepsilon) \\
& =\exp \left(b z_{0}\right) \exp (2 \pi i k \varepsilon)
\end{aligned}
$$

Now take the case $k=1$. Then $0<2 \pi \varepsilon<2 \pi$, and so $\exp (2 \pi i \varepsilon) \neq 1$. Therefore the function is not single-valued.
Finally, we consider the case where b is rational; say $b=\frac{m}{n}$ in lowest terms. Then it turns out there are n possible values for a^{b}. To see, this, in the above calculation we have $\varepsilon=\frac{m}{n}$, where we may assume $0<m<n$. One can show that $\exp \left(2 \pi i k_{1} \frac{m}{n}\right)=\exp \left(2 \pi i k_{2} \frac{\mathfrak{m}}{n}\right)$ if and only if $k_{1} \equiv k_{2}(\bmod n)$; the details are omitted.
Incidentally, if you take the case $\mathrm{b}=\frac{1}{2}$, this explains why every nonzero number has two square roots! Over \mathbb{R}, we privilege positive square roots; but over C, we can do no such thing. Finally, note that in the rational case, the n roots have the same magnitude, but their arguments differ by integer multiples of $2 \pi / \mathrm{n}$; in other words, they are evenly spaced around the origin.

