HW 4 Selected Solutions
 Prof. Shahed Sharif

3.3 Certainly if $\alpha=0$, then the equation does not give a circle, and gives a line if and only if at least one of $\beta, \gamma \neq 0$. One checks that for $\alpha=0$, the inequality gives exactly this.
Now assume $\alpha \neq 0$. We may rewrite equation (3.1) as

$$
x^{2}+\frac{\beta}{\alpha} x+y^{2}+\frac{\gamma}{\alpha} y=-\frac{\delta}{\alpha}
$$

We complete the square to obtain

$$
\left(x+\frac{\beta}{2 \alpha}\right)^{2}+\left(y+\frac{\gamma}{2 \alpha}\right)^{2}=\frac{\beta^{2}}{4 \alpha^{2}}+\frac{\gamma^{2}}{4 \alpha^{2}}-\frac{\delta}{\alpha}=\frac{\beta^{2}+\gamma^{2}-4 \alpha \delta}{4 \alpha^{2}}
$$

This gives a circle if and only if the radius is positive; in other words, the right hand side must be >0. Notice that $4 \alpha^{2}>0$, so the right side is positive if and only if its numerator is positive, yielding the desired condition.
3.5 This can be done directly: that is, let $T(z)=\frac{a z+b}{c z+d}$, write $T(z)=z$, then solve for z. We end up with a quadratic in z, which has at most 2 roots. (Technically you can also get the zero polynomial, but this can only occur if $\mathrm{T}=$ id.) But the easier method is to use Corollary 3.13. Suppose T is a Möbius transformation with 3 fixed points, z_{1}, z_{2}, z_{3}. For each i, set $w_{i}=z_{i}$. Then by Corollary 3.13, T is the unique Möbius transformation with the property that $\mathrm{T}\left(z_{1}\right)=w_{1}, \mathrm{~T}\left(z_{2}\right)=w_{2}, \mathrm{~T}\left(z_{3}\right)=w_{3}$. But the identity map also has this property! Therefore T must itself be the identity.
3.8 I believe the intended solution is to take a Möbius transformation T which sends S^{1} to the real line (for example, $T(z)=\frac{i+i z}{1-z}$), and consider the composition $T \circ f$. Then we apply Exercise 2.20 to $T \circ f$. We have to be a little bit careful, though, since T sends 1 to ∞. So let $G_{1}=\{z \in G: f(z) \neq 1\}$. Then $T \circ f$ is holomorphic on G_{1} by Prop. 2.10f. Since its image lies in the real line, $T \circ f$ is a constant by Exercise 2.20. As T is a bijection, f must be constant on G_{1}. By continuity, f must be constant on G as well (I omit the details).
Here is a different method that avoids the subtleties in the above proof. The constant function 1 is holomorphic. Additionally, f is never 0 (since $0 \notin S^{1}$), and so $\frac{1}{f}$ is defined and holomorphic on G by Prop. 2.10c. As $f(z) \in S^{1}$ for all $z \in G$, we have $|f(z)|^{2}=1$. Therefore for all $z \in G$,

$$
\frac{1}{f(z)}=\frac{|f(z)|^{2}}{f(z)}=\frac{f(z) \overline{f(z)}}{f(z)}=\overline{f(z)}
$$

It follows that both f and \bar{f} are holomorphic on G, and so by Exercise 2.21, f is constant.
3.14 For (a), we have

$$
[z, 1,2,3]=\frac{(z-1)(2-3)}{(z-3)(2-1)}=\frac{-z+1}{z-3}
$$

For (b), we want

$$
[z, 1,1+i, 2]=\frac{(z-1)(1+i-2)}{(z-2)(1+i-1)}=\frac{i-1}{i} \frac{z-1}{z-2}=(1+i) \frac{z-1}{z-2}
$$

For (c), we want the inverse of $[z, i, 1,-i]$. We have

$$
[z, i, 1,-i]=\frac{(z-i)(1-(-i)}{(z-(-i))(1-i)}=\frac{1+i}{1-i} \frac{z-i}{z+i}=\frac{i z+1}{z+i}
$$

By Exercise 3.1, the inverse is

$$
\frac{i z-1}{-z+i}
$$

