HW 3 Selected Solutions
 Prof. Shahed Sharif

2.6 Consider a line through the origin. Let $(a, b) \neq(0,0)$ be any point on that line. Then the line is parametrized by $(x, y)=(a t, b t)$. Along that line, the limit as $z \rightarrow 0$ of f is given by

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{(a t)^{2} b t}{(a t)^{4}+(b t)^{2}} & =\lim _{t \rightarrow 0} \frac{a^{2} b t^{3}}{t^{2}\left(a^{4} t^{2}+b\right)} \\
& =\lim _{t \rightarrow 0} \frac{a^{2} b}{a^{4} t^{2}+b} t .
\end{aligned}
$$

One sees that the limit is 0 , and therefore the limit along any line through the origin is 0 as $z \rightarrow 0$.
Now consider the parabola. It is parametrized by $(x, y)=\left(t, t^{2}\right)$. The corresponding limit is

$$
\lim _{t \rightarrow 0} \frac{t^{2} t^{2}}{t^{4}+t^{4}}=\frac{1}{2}
$$

Since this value is not 0 , by Prop 2.2, the limit does not exist.
2.19 According to the definition of f, the value is 0 along the real an imaginary axes and 1 elsewhere. Since f is constant along the axes, at 0 , we must have $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$. In particular, $u_{x}, u_{y}, v_{x}, v_{y}$ are all zero at $z=0$, and so the Cauchy-Riemann equations are trivially satisfied. But Theorem 2.13b requires the partials f to be defined and continuous at the origin, which it is not: choose any $t>0$. Then the function $g(y)=f(t+i y)$ is not continuous at $y=0$, and so its derivative does not exist there. This means $\frac{\partial f}{\partial y}$ is not defined at $(t, 0)$. As this holds for arbitrarily small positive t, the hypotheses of Theorem 2.13b are not satisfied.
2.21 By Prop. 2.10a, $(f+\bar{f}) / 2$ is also differentiable on G, and hence holomorphic. But $(f+\bar{f}) / 2=\operatorname{Re}(f)$ is real, and so by exercise $2.20, \operatorname{Re}(f)$ is constant. A similar argument applies to $(f-\bar{f}) / 2 i=\operatorname{Im}(f)$, so $\operatorname{Im}(f)$ is constant. Since both $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are constant, f is constant.

