HW 2 Selected Solutions
 Prof. Shahed Sharif

1.31 Let our regions be G and H, and let $K=G \cup H$. We wish to show that K is open and connected. By problem A., K is open. To simplify the proof that K is connected, I will first prove the following:

Claim. If X is a connected set, U, V are disjoint open sets, and $\mathrm{X} \subset \mathrm{U} \cup \mathrm{V}$, then $\mathrm{X} \subset \mathrm{U}$ or $\mathrm{X} \subset \mathrm{V}$.

Proof. If the conclusion does not hold, let $A=X \cap U$ and $B=X \cap V$; observe that neither is empty. Since $A \subset U$ and $B \subset V, A$ and B are separated, but as $A \cup B=X$, this is a contradiction. The claim follows.

Now suppose $K=A \cup B$ and we have disjoint open sets U, V with $A \subset U$, $\mathrm{B} \subset \mathrm{V}$. Take $z_{0} \in \mathrm{G} \cap \mathrm{H}$. Without loss of generality, $z_{0} \in A$. As $z_{0} \in \mathrm{U}$, we have $\mathrm{G} \cap \mathrm{U} \neq \varnothing$. From the claim, it follows that $\mathrm{G} \subset \mathrm{U}$. But by similar reasoning, $\mathrm{H} \subset \mathrm{U}$. Therefore $\mathrm{G} \cup \mathrm{H}=\mathrm{K} \subset \mathrm{U}$, and so B must be empty. It follows that K is connected.

Since K is both open and connected, it is a region.
1.32 Suppose $A \subset B$ and B is closed. let $x \in \partial A$. If $x \in B$, then there is nothing to show; so suppose $x \notin B$. I claim that $x \in \partial B$. For let $\varepsilon>0$, and consider $D[x, \varepsilon]$. As $x \in \partial A, \exists y \in A \cap D[x, \varepsilon]$, and hence $y \in B \cap D[x, \varepsilon]$. On the other hand, $x \in D[x, \varepsilon]$ and $x \notin B$. As this holds $\forall \varepsilon>0$, we have $x \in \partial B$. It follows that $\partial A \subset B \cup \partial B$. But B is closed, so $\partial B \subset B$, and hence $\partial A \subset B$.
Now suppose $A \subset B$ and A is open. Let $x \in A$. Since A is open, $\exists \varepsilon>0$ such that $\mathrm{D}[\mathrm{x}, \varepsilon] \subset A$. But $A \subset B$, so $\mathrm{D}[\mathrm{x}, \varepsilon] \subset \mathrm{B}$. Therefore x is in the interior of B.
1.33 Answers are not unique, but for example, for (a) we could do $\gamma(\mathrm{t})=1+\mathrm{i}+$ $e^{i t}$ for $0 \leq t \leq 2 \pi$, and for (d) we could do

$$
\gamma(t)= \begin{cases}(t+5)-2 i & -6 \leq t \leq-4 \\ 1+(t+2) i & -4 \leq t \leq 0 \\ (1-t)+2 i & 0 \leq t \leq 2 \\ -1-(4-t) i & 2 \leq t \leq 6\end{cases}
$$

A. Let $\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ be an arbitrary collection of open sets, and let $U=U_{\lambda} U_{\lambda}$. Let $x \in U$. Then $x \in U_{\lambda}$ for some λ. As U_{λ} is open, $\exists \varepsilon>0$ such that $\mathrm{D}[\mathrm{x}, \varepsilon] \subset \mathrm{U}_{\lambda}$. But $\mathrm{U}_{\lambda} \subset \mathrm{U}$, and hence $\mathrm{D}[\mathrm{x}, \varepsilon] \subset \mathrm{U}$. This holds for all $\mathrm{x} \in \mathrm{U}$, and hence U is open.
B. Let U, V be open sets, and let $W=U \cap V$. Let $z_{0} \in W$. Since $z_{0} \in U$ and U is open, $\exists r>0$ such that $D\left[z_{0}, r\right] \subset U$. Similarly, $\exists s>0$ such that $D\left[z_{0}, s\right] \subset V$. Let $R=\min (r, s)$. Observe that $R>0$ and

$$
\begin{aligned}
& D\left[z_{0}, R\right] \subset D\left[z_{0}, r\right], \text { so } D\left[z_{0}, R\right] \subset U, \text { and } \\
& D\left[z_{0}, R\right] \subset D\left[z_{0}, s\right], \text { so } D\left[z_{0}, R\right] \subset V
\end{aligned}
$$

Therefore $D\left[z_{0}, R\right] \subset W$. Since $z_{0} \in W$ was arbitrary, this shows that W is open.
C. Take for instance the sets $\mathrm{D}[0, \mathrm{r}]$ for $\mathrm{r}>0$. The intersection of these is just $z=0$, which is not open since any open disk around 0 must contain at least one other point (and in fact infinitely many other points!).
D. Let B be a closed set, and set $A=B^{c}$. Take $x \in A$. I claim that $\exists \varepsilon>0$ such that $D[x, \varepsilon] \subset A$. If not, then for all $\varepsilon, \exists y \in D[x, \varepsilon] \cap B$. But as $x \in D[x, \varepsilon]$ and $x \notin B$, this would imply that $x \in \partial B$. But B is closed, and so $\partial B \subset B$, implying that $x \in B$. This contradicts $x \in A$. Thus there is such an ε, proving that A is open.

