HW 11 Selected Solutions Prof. Shahed Sharif

7.32 Suppose $\lim \left|\frac{c_{k+1}}{c_{k}}\right|=0$. Let $r=\left|z-z_{0}\right|$, and let $\varepsilon=\frac{1}{2 r}$. Then $\exists N$ such that $n \geq N$ implies $\left|\frac{\mathfrak{c}_{n+1}}{\mathbf{c}_{n}}\right|<\varepsilon$, or in other words

$$
\left|c_{n+1}\right|<\left|c_{n}\right| / 2 r .
$$

A straightforward induction implies that $\left|c_{N+k}\right|<\frac{\left|c_{N}\right|}{2^{k} r^{k}}$, and so

$$
\left|\mathrm{c}_{\mathrm{N}+\mathrm{k}}\left(z-z_{0}\right)^{\mathrm{N}+\mathrm{k}}\right|<\frac{\left|\mathrm{c}_{\mathrm{N}}\right|}{2^{\mathrm{k}}} .
$$

Let $M_{n}=\left|c_{n}\left(z-z_{0}\right)^{n}\right|$ for $n<N$ and, for $n \geq N$, letting $k=N-n$, set $M_{n}=\frac{\mid c_{N}}{2^{k}}$. The series $\sum M_{n}$ converges since it is the sum of a finite series (the terms up to $n=N-1$) plus a geometric series (the remaining terms) with common ratio $\frac{1}{2}$. By the Comparison Test, our original series converges absolutely.
Suppose $\lim \left|\frac{\mathfrak{c}_{k}}{\mathfrak{c}_{k+1}}\right|=R$. The argument is similar. Let $r=\left|z-z_{0}\right|$, and assume that $r<R$. Let s be any value strictly between r and R; say, $s=\frac{1}{2}(r+R)$. There exists N such that $n \geq N$ implies that $\left|\frac{c_{k}}{\mathfrak{c}_{k+1}}-R\right|<(R-s)$, and so in particular $\left|\frac{\mathfrak{c}_{k}}{\mathfrak{c}_{k+1}}\right| \geq$ s. A straighforward induction shows that $\left|c_{N+k}\right| \leq$ $\left|c_{N}\right| / s^{k}$. Then

$$
\begin{aligned}
\left|c_{N+k}\left(z-z_{0}\right)^{N+k}\right| & \leq\left|c_{N}\right| r^{N+k} / s^{k} \\
& =r^{N}\left|c_{N}\right|\left(\frac{r}{s}\right)^{k}
\end{aligned}
$$

Since $0<r / s<1$, the series $\sum_{k=0} r^{N}\left|c_{N}\right|(r / s)^{k}$ converges. By the Comparison Test, $\sum_{k=0}\left|c_{N+k}\left(z-z_{0}\right)^{\bar{N}+k}\right|$ converges absolutely. The full series therefore also converges absolutely since ignoring the first N terms does not affect convergence.
A similar argument shows divergence outside the disk: if $\left|z-z_{0}\right|>R$, let $r=\left|z-z_{0}\right|$, choose s with $R<s<r$, check that $\left|\frac{c_{k}}{c_{k+1}}\right| \leq s$, and hence $\left|c_{N+k}\right| \geq\left|c_{N}\right| / s^{k}$. Then

$$
\begin{aligned}
\left|c_{N+k}\left(z-z_{0}\right)^{N+k}\right| & \geq\left|c_{N}\right| r^{N+k} / s^{k} \\
& =r^{N}\left|c_{N}\right|\left(\frac{r}{s}\right)^{k}
\end{aligned}
$$

and now since $r / s>1$, the geometric series diverges. The details are similar.
7.33f If $|z|<1$, then $\left|(\cos k) z^{k}\right|<|z|^{k}$. But $\sum|z|^{k}$ is a convergent geometric series, so by the Comparison Test, $\sum(\cos k) z^{k}$ converges absolutely. Thus the radius is at least 1 .

Now suppose $r>1$. I claim that the series diverges when $z=r$. The key fact is that as k varies in \mathbb{Z}, the values of $\cos k$ are dense in $[-1,1]$. In particular, there are infinitely many values of k such that $\cos k>0.9$, and so for those values of $k,(\cos k) r^{k}>0.9$. That means $\lim _{k \rightarrow \infty}(\cos k) r^{k} \neq 0$. By the Test for Divergence, the series diverges. Therefore the radius of convergence is at most 1.
We conclude that the radius is exactly 1 .
8.7 Let $z_{0} \in G$. Since G is open, $\exists r>0$ such that $D\left[z_{0}, r\right] \subset G$. Let γ be any piecewise smooth closed path in $\mathrm{D}\left[z_{0}, r\right]$. Since $\mathrm{D}\left[z_{0}, r\right]$ is simply connected, γ is contractible in $D\left[z_{0}, r\right]$, and hence $\int_{\gamma} f_{n} d z=0$. But since $f_{n} \rightarrow f$ uniformly on $G, \int_{\gamma} f_{n} d z$ converges to $\int_{\gamma} f d z$, and so the latter integral is zero. We also know that f is continuous (it is a uniform limit of continuous functios), so by Morera's Theorem, f is holomorphic at z_{0}. This holds for all $z_{0} \in G$, and hence f is holomorphic on G.
Note that you cannot just apply Morera's Theorem on G, because the hypothesis of Morera's Theorem might not be true! Take for example $G=$ $\mathbb{C}-\{0\}, f_{n}(z)=f(z)=\frac{1}{z}$, and $\gamma=C[0,1]$. Then $\int_{\gamma} f_{n} d z=2 \pi i$. The issue here is invoking Cauchy's Theorem on f_{n}; you can only use it if the path is contractible in G.

