HW 11 Selected Solutions Prof. Shahed Sharif

7.32 Suppose $\lim |\frac{c_{k+1}}{c_k}| = 0$. Let $r = |z - z_0|$, and let $\varepsilon = \frac{1}{2r}$. Then $\exists N$ such that $n \ge N$ implies $|\frac{c_{n+1}}{c_n}| < \varepsilon$, or in other words

$$|c_{n+1}| < |c_n|/2r.$$

A straightforward induction implies that $|c_{N+k}| < \frac{|c_N|}{2^k r^k}$, and so

$$|c_{N+k}(z-z_0)^{N+k}| < \frac{|c_N|}{2^k}.$$

Let $M_n = |c_n(z - z_0)^n|$ for n < N and, for $n \ge N$, letting k = N - n, set $M_n = \frac{|c_N|}{2^k}$. The series $\sum M_n$ converges since it is the sum of a finite series (the terms up to n = N - 1) plus a geometric series (the remaining terms) with common ratio $\frac{1}{2}$. By the Comparison Test, our original series converges absolutely.

Suppose $\lim |\frac{c_k}{c_{k+1}}| = R$. The argument is similar. Let $r = |z - z_0|$, and assume that r < R. Let s be any value strictly between r and R; say, $s = \frac{1}{2}(r + R)$. There exists N such that $n \ge N$ implies that $|\frac{c_k}{c_{k+1}} - R| < (R - s)$, and so in particular $|\frac{c_k}{c_{k+1}}| \ge s$. A straightforward induction shows that $|c_{N+k}| \le |c_N|/s^k$. Then

$$\begin{aligned} |\mathbf{c}_{N+k}(z-z_0)^{N+k}| &\leq |\mathbf{c}_N| r^{N+k}/s^k \\ &= r^N |\mathbf{c}_N| \left(\frac{r}{s}\right)^k. \end{aligned}$$

Since 0 < r/s < 1, the series $\sum_{k=0} r^N |c_N| (r/s)^k$ converges. By the Comparison Test, $\sum_{k=0} |c_{N+k}(z-z_0)^{N+k}|$ converges absolutely. The full series therefore also converges absolutely since ignoring the first N terms does not affect convergence.

A similar argument shows divergence outside the disk: if $|z - z_0| > R$, let $r = |z - z_0|$, choose s with R < s < r, check that $|\frac{c_k}{c_{k+1}}| \le s$, and hence $|c_{N+k}| \ge |c_N|/s^k$. Then

$$\begin{aligned} |\mathbf{c}_{N+k}(z-z_0)^{N+k}| &\geq |\mathbf{c}_N| \mathbf{r}^{N+k} / \mathbf{s}^k \\ &= \mathbf{r}^N |\mathbf{c}_N| \left(\frac{\mathbf{r}}{\mathbf{s}}\right)^k, \end{aligned}$$

and now since r/s > 1, the geometric series diverges. The details are similar.

7.33f If |z| < 1, then $|(\cos k)z^k| < |z|^k$. But $\sum |z|^k$ is a convergent geometric series, so by the Comparison Test, $\sum (\cos k)z^k$ converges absolutely. Thus the radius is at least 1.

Now suppose r > 1. I claim that the series diverges when z = r. The key fact is that as k varies in \mathbb{Z} , the values of $\cos k$ are dense in [-1, 1]. In particular, there are infinitely many values of k such that $\cos k > 0.9$, and so for those values of k, $(\cos k)r^k > 0.9$. That means $\lim_{k\to\infty} (\cos k)r^k \neq 0$. By the Test for Divergence, the series diverges. Therefore the radius of convergence is at most 1.

We conclude that the radius is exactly 1.

8.7 Let $z_0 \in G$. Since G is open, $\exists r > 0$ such that $D[z_0, r] \subset G$. Let γ be any piecewise smooth closed path in $D[z_0, r]$. Since $D[z_0, r]$ is simply connected, γ is contractible in $D[z_0, r]$, and hence $\int_{\gamma} f_n dz = 0$. But since $f_n \to f$ uniformly on G, $\int_{\gamma} f_n dz$ converges to $\int_{\gamma} f dz$, and so the latter integral is zero. We also know that f is continuous (it is a uniform limit of continuous functios), so by Morera's Theorem, f is holomorphic at z_0 . This holds for all $z_0 \in G$, and hence f is holomorphic on G.

Note that you cannot just apply Morera's Theorem on G, because the hypothesis of Morera's Theorem might not be true! Take for example $G = \mathbb{C} - \{0\}$, $f_n(z) = f(z) = \frac{1}{z}$, and $\gamma = C[0, 1]$. Then $\int_{\gamma} f_n dz = 2\pi i$. The issue here is invoking Cauchy's Theorem on f_n ; you can only use it if the path is contractible in G.