HW 10 Selected Solutions
 Prof. Shahed Sharif

7.8 Suppose for the sake of contradiction that there is a limit point L and two accumulation points p_{1}, p_{2}. Let $d=\max \left(\left|p_{1}-L\right|,\left|p_{2}-L\right|\right)$. It is possible that $L=p_{1}$ or $L=p_{2}$, but since $p_{1} \neq p_{2}$, we cannot have both equalities. Therefore $d>0$. Without loss of generality, $\left|p_{1}-L\right|=d$. Let $\varepsilon=d / 2$. Since $\lim _{n \rightarrow \infty} a_{n}=L, \exists N$ such that $n \geq N$ implies that $\left|a_{n}-L\right|<\varepsilon$. But p_{1} is an accumulation point, so for the same $N, \exists m \geq N$ such that $\left|a_{m}-p_{1}\right|<\varepsilon$. Thus

$$
\left|a_{m}-p_{1}\right|<\varepsilon \text { and }\left|a_{m}-L\right|<\varepsilon
$$

We now derive a contradiction. Using the triangle inequality and the above inequalities, we have

$$
\begin{aligned}
d & =\left|p_{1}-L\right| \\
& \leq\left|p_{1}-a_{m}\right|+\left|a_{m}-L\right| \\
& <\varepsilon+\varepsilon \\
& =\frac{d}{2}+\frac{d}{2}
\end{aligned}
$$

implying that $\mathrm{d}<\mathrm{d}$. This is a contradiction, and so the claim is proved.
7.21 If $x \neq \pi / 2$, then $|\sin (x)|<1$, and hence

$$
\lim _{n \rightarrow \infty} \sin ^{n}(x)=0
$$

As $\sin (\pi / 2)=1$, we have

$$
\lim _{n \rightarrow \infty} \sin ^{n}(\pi / 2)=\lim _{n \rightarrow \infty} 1^{n}=1
$$

This shows pointwise convergence. If the convergence were uniform, then since $\sin ^{n}(x)$ is continuous for all n, we would conclude that $f(x)$ is continuous by Prop 7.25. But it clearly isn't continuous, so the convergence is not uniform.
7.29c The denominator is the tricky part! Let $d=1-r$, so $0<d<1$. Then since $|z| \leq r<1$ on our domain, $|z|^{k} \leq r^{k}<r$, and so

$$
\left|1+z^{\mathrm{k}}\right| \geq 1-|z|^{\mathrm{k}} \geq 1-\mathrm{r}=\mathrm{d}
$$

for all $k \geq 0$. We therefore get that

$$
\left|\frac{z^{\mathrm{k}}}{z^{\mathrm{k}}+1}\right| \leq \frac{\mathrm{r}^{\mathrm{k}}}{\mathrm{~d}}
$$

The series $\sum \frac{r^{k}}{d}$ is geometric and converges to

$$
\frac{1}{\mathrm{~d}(1-\mathrm{r})}
$$

By the Weierstrass M-test, the original series converges uniformly on $\bar{D}[0, r]$.

