HW 1 Selected Solutions
 Prof. Shahed Sharif

1.4 These are
(a) $2 e^{i \pi / 2}$
(b) $\sqrt{2} e^{i \pi / 4}$
(c) $2 \sqrt{3} e^{i 5 \pi / 6}$
(d) $e^{3 \pi i / 2}$
(e) $5 e^{i \theta}$ where $\cos \theta=3 / 5$ and $0<\theta<-\pi / 2$
(f) $5 e^{0}$
(g) $\sqrt{6} e^{i \varphi}$ where $\cos \varphi=\frac{\sqrt{5}}{\sqrt{6}}$ and $0<\varphi<-\pi / 2$
(h) $\frac{4}{9} e^{\mathfrak{i} \pi}$ (it is easiest to convert to polar before exponentiating)
1.13 For (a), let $z=x+i y$. Setting $z=\bar{z}$, we get $x+i y=x-i y$, so $2 i y=0$, and hence $y=0$. It follows that $z \in \mathbb{R}$. The converse results from reversing the argument.
For (b), if $z^{2}=\bar{z}^{2}$, by part (a), $z^{2} \in \mathbb{R}$. If $z^{2} \geq 0$, then there are exactly two real possibilities for z. If $z^{2}=-r$ for $r>0$, then $z= \pm i \sqrt{r}$ where \sqrt{r} refers to the positive square root of r (as usual).
The converse is omitted.
1.17 Rather than use the hint, it's easier just to use the Math 470 result that a degree n polynomial over a field has at most n roots. We apply this to the polynomial $p(z)=z^{n}-1$. For $m \in \mathbb{Z}$, we have

$$
\begin{aligned}
p\left(e^{2 \pi i m / n}\right) & =\left(e^{2 \pi i m / n}\right)^{n}-1 \\
& =\left(e^{2 \pi i}\right)^{m}-1 \\
& =1^{m}-1 \\
& =0
\end{aligned}
$$

Notice that as m varies in $0 \leq m \leq n-1$, the numbers $e^{2 \pi m / n}$ have distinct arguments in $[0,2 \pi)$, and hence are distinct complex roots. This yields n distinct roots for p, so there are no additional roots.

