HW 1 Selected Solutions Prof. Shahed Sharif

1.4 These are

- (a) $2e^{i\pi/2}$ (b) $\sqrt{2}e^{i\pi/4}$ (c) $2\sqrt{3}e^{i5\pi/6}$ (d) $e^{3\pi i/2}$ (e) $5e^{i\theta}$ where $\cos \theta = 3/5$ and $0 < \theta < -\pi/2$ (f) $5e^{0}$ (g) $\sqrt{6}e^{i\phi}$ where $\cos \phi = \frac{\sqrt{5}}{\sqrt{6}}$ and $0 < \phi < -\pi/2$
 - (h) $\frac{4}{9}e^{i\pi}$ (it is easiest to convert to polar before exponentiating)
- 1.13 For (a), let z = x + iy. Setting $z = \overline{z}$, we get x + iy = x iy, so 2iy = 0, and hence y = 0. It follows that $z \in \mathbb{R}$. The converse results from reversing the argument.

For (b), if $z^2 = \overline{z}^2$, by part (a), $z^2 \in \mathbb{R}$. If $z^2 \ge 0$, then there are exactly two real possibilities for *z*. If $z^2 = -r$ for r > 0, then $z = \pm i\sqrt{r}$ where \sqrt{r} refers to the positive square root of r (as usual).

The converse is omitted.

1.17 Rather than use the hint, it's easier just to use the Math 470 result that a degree n polynomial over a field has at most n roots. We apply this to the polynomial $p(z) = z^n - 1$. For $m \in \mathbb{Z}$, we have

$$p(e^{2\pi i m/n}) = (e^{2\pi i m/n})^n - 1$$

= $(e^{2\pi i})^m - 1$
= $1^m - 1$
= 0.

Notice that as m varies in $0 \le m \le n-1$, the numbers $e^{2\pi m/n}$ have distinct arguments in $[0, 2\pi)$, and hence are distinct complex roots. This yields n distinct roots for p, so there are no additional roots.