Math 536: Exam 1

October 18, 2023

Make sure to show all your work as clearly as possible. This includes justifying your answers if required. Avoid using the back of the page; instead, there is an extra sheet at the end that you can use. You may use any result proven in the text or in lecture through $\S 4.2$, but not homework problems. Standard algorithms require no justification. Calculators are not allowed.

1. (a) (5 points) Compute $(1-2 i)^{2}$.

Solution: This is $-3-4 i$.
(b) (5 points) Write $-3+\sqrt{3} i$ in polar form.

Solution: This is $2 \sqrt{3} e^{5 \pi i / 6}$.
(c) (5 points) Find a Möbius transformation T satisfying $T(0)=i, T(1)=-1, T(\infty)=-i$.

Solution: Let $S=[z, i,-1,-i]$. We have

$$
S=\frac{(z-i)(-1+i)}{(z+i)(-1-i)}=\frac{-i z-1}{z+i}
$$

But

$$
T(z)=S^{-1}(z)=\frac{i z+1}{-z-i}
$$

(d) (5 points) Given an example of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that the partials $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist and are continuous everywhere, but f is not differentiable anywhere.

Solution: $f(z)=\bar{z}$; we showed this in class.
2. (a) (10 points) Show that if f is an entire function and $f(z)$ is real for all z, then f is constant.

Solution: This was a homework problem.
(b) (10 points) Show that if f is an entire function and $|f(z)|=1$ for all z, then f is constant.

Solution: Ditto.

3. (15 points) Show that the union of two closed sets is closed.

Solution: Let A, B be closed sets, and let $C=A \cup B$. Let $x \in \partial C$. If $x \in A$ or $x \in B$, then certainly $x \in C$. So suppose $x \notin A, x \notin B$. Since $x \in \partial C$, for each $\varepsilon>0, \exists c \in C$ such that $c \in D[x, \varepsilon]$. Set $\varepsilon=\frac{1}{n}$ for each n, and let c_{n} be the corresponding element of C. We have $c_{n} \in A$ or $c_{n} \in B$ for each n. Since there are infinitely many n, there is an infinite subsequence of c_{n} which lies entirely in A or entirely in B; without loss of generality we'll say this subsequence lies in A. Then given $\varepsilon>0$, there is n coming from this subsequence for which $\frac{1}{n}<\varepsilon$, and hence $c_{n} \in A \cap D[x, \varepsilon]$. This holds for all ε, and so $x \in \partial A$. But A is closed, so $x \in A$, and hence $x \in C$. It follows that C is closed.
Here is an alternative proof: Let A, B be closed set and $C=A \cup B$. We will show the contrapositive of the definition of closed: if $x \notin C$, then $x \notin \partial C$. As $x \notin A$, we have $x \notin \partial A$, so $\exists r_{1}$ such that $D\left[x, r_{1}\right] \cap A=\varnothing$. Similarly, $x \notin B$, so $\exists r_{2}$ such that $D\left[x, r_{2}\right] \cap B=\varnothing$. Let $r=\min \left(r_{1}, r_{2}\right)$. Then $D[x, r]$ is disjoint from both A and B, and hence $D[x, r] \cap C=\varnothing$. It follows that $x \notin \partial C$, as desired.
4. (15 points) Show that the function $f(z)=z^{2}$ is continuous on all of \mathbb{C}, using the definition of continuity.

Solution: Choose $w \in \mathbb{C}$. I wish to show that $\lim _{z \rightarrow w} z^{2}=w^{2}$. Take $\varepsilon>0$. Choose $\delta=\min \left(\frac{\varepsilon}{2|w|+1}, 1\right)$, and suppose $|z-w|<\delta$. Then

$$
\begin{aligned}
\left|z^{2}-w^{2}\right| & =|z+w||z-w| \\
& <\delta|z+w| \\
& \leq \delta(|z|+|w|) \\
& \leq \delta(|w|+1+|w|) \\
& =\frac{\varepsilon}{2|w|+1}(2|w|+1) \\
& =\varepsilon
\end{aligned}
$$

This holds for all $\varepsilon>0$, and so continuity follows.
5. (15 points) Let $i \mathbb{R}$ denote the imaginary axis and S^{1} the unit circle. Find a Möbius transformation T satisfying $T(i \mathbb{R}) \subset S^{1}$; make sure to justify your answer!

Solution: We can do this by sending any 3 distinct points on $i \mathbb{R}$ to S^{1}; since Möbius transformations send generalized circles to generalized circles, it would follow that $i \mathbb{R}$ gets sent to S^{1}. On \hat{C}, ∞ lies on every line, so we can even let ∞ be one of the points.
There are thus many answers; but for instance let $S_{1}(z)=[z,-i, 0, i]$ and $S_{2}(z)=[z, 1, i,-1]$. Then we know that $S_{2}^{-1} \circ S_{1}$ send $-i, 0, i$ to $1, i,-1$, respectively. Thus $T=S_{2}^{-1} \circ S_{1}$ works. We get $S_{1}=\frac{z+i}{-z+i}$ and $S_{2}=\frac{-i z+i}{z+1}$, from which one can obtain

$$
T(z)=\frac{z+1}{i z-i}
$$

6. (15 points) Let $c \in \mathbb{C}, c \neq 0$, and let $f(z)=z^{c}$. Prove that $f^{\prime}(z)=c z^{c-1}$.

Solution: We write $f(z)=\exp (c \log (z))$. Then

$$
\begin{aligned}
f^{\prime}(z) & =c \frac{d}{d z} \log (z) \cdot \exp (c \log (z)) \\
& =\frac{c}{z} \exp (c \log (z)) \\
& =\frac{c}{z} z^{c} \\
& =c z^{c-1}
\end{aligned}
$$

Note that even though Log is not holomorphic on $\mathbb{C}-\{0\}$, it is differentiable on that domain.
7. Let γ be the polygonal path from $2 i$ to $-1+i$ to $-1-i$ to $-2 i$.
(a) (10 points) Compute $\int_{\gamma} \exp (\pi z) d z$.

Solution: The function $\frac{1}{\pi} \exp (\pi z)$ is an antiderivative, and so applying the corresponding theorem yields

$$
\frac{1}{\pi} \exp (-2 i \pi)-\frac{1}{\pi} \exp (2 i \pi)=0
$$

(b) (10 points) Compute $\int_{\gamma} \frac{1}{z} d z$.

Solution: The principal branch of logarithm is not an antiderivative along γ since it is discontinuous at -1 . However, we can use a different branch of log; namely, the one with $\log (z)=\ln |z|+i \arg (z)$ with $0 \leq \arg (z)<2 \pi$. This branch is continuous on $\mathbb{C}-\mathbb{R}^{>0}$. Now applying our theorem, the integral is $\log (-2 i)-\log (2 i)=(\ln |2|+$ $\left.i \frac{3 \pi}{2}\right)-\left(\ln |2|+i \frac{\pi}{2}\right)=i \pi$.

