
Math 521: Computational and Applied Algebra Fall 2024

Sage tutorial
Prof. Shahed Sharif

1 Getting started
Openup a terminal and type jupyter notebook. If that doesn’twork, you can try
sage -n jupyter. Windows users may have to consult https://doc.sagemath.
org/html/en/installation/launching.html to troubleshoot.

In the upper right is a drop-down labelled “New”. Select “SageMath”. This
will create a new Sage notebook file “Untitled.ipynb” in the directory you ran
Sage. Click on “Untitled” at the top to change the name to whatever you’d like.

As you’re reading below, you’ll see stuff that looks like programming. When
you do, type out each line exactly as you see it in an empty cell. To execute, press
Shift + Enter. (Or use Ctrl + Enter if you don’t want to create an additional
cell.) If you want to enter additional lines within a shell, just hit Enter. If you
get an error, it is overwhelmingly likely that you typed something incorrectly—
the error message should tell you what went wrong. Pay particular attention to
tabs at the beginnings of lines—these are crucial to how Python functions! The
interface will try to anticipate the correct indentation, but it will not always be
correct. Backspace will dedent, i.e. decrease the indentation level by 1.

2 Basics of programming
What a computer program does—and by extension, how we understand com-
puter programming—can be divided up into five parts:

I/O. This stands for “input/output”. That is, the program will often ask for
some information from the user (input), and at some point will display results
(output). This can be very complicated if, for example, your program is a video
game. For us, I/O will be very simple.

Data. Aprogram stores andmanipulates data. Data is, broadly, stored in vari-
ables, of which there are a number of different types. A program can change the
content of a variable, and also read the contents of a variable.

Arithmetic. Programs can do arithmetic. This at a minimum means the 4
standard arithmetic operations, but Sage can natively do a lot more.

Booleans. A program can determine the truth or falsity of certain types of
statements. A Boolean value is essentially either “true” or “false”, and a Boolean
function is something that inputs a bunch of statements and, based on the truth
of those statements, outputs a Boolean value.

1 of 8

https://doc.sagemath.org/html/en/installation/launching.html
https://doc.sagemath.org/html/en/installation/launching.html

Math 521: Computational and Applied Algebra
Fall 2024

Sage tutorial

Control flow. Control flow refers to the order in which the computer executes
commands. One way of looking at this is that control flow instructs the com-
puter what it should do next. The most important part of control flow is itera-
tion; that is, doing the same or similar tasks or calculations repeatedly. Com-
puters are much better suited to iteration than humans!

2.1 Putting the parts together
Any algorithm can be put together out of these constituent parts. Whenwriting
a program, your first task should be to figure out how to write your algorithm
out of these parts. You should do this away from the computer!

Once you’ve done that, let’s look at how the various parts of a computer
language are implemented in Sage. (Note that Sage is built on Python, so much
of the syntax is inherited from Python.) Remember that after entering each
command below, press Shift + Enter to execute.

3 Arithmetic

5+3
5-3
5*3
5*(2+3)
5/3
5//3

Note the difference between integer division and regular division!
There are two more useful operations; see if you can determine what they

do:

2^3
17%5

To work in other rings, you have to define the ring first. The # denotes a com-
ment; you do not have to type that in!

R.<t> = PolynomialRing(QQ)
R = Q[t], where Q denotes rational numbers
f = 3*t^2 - t + 4
g = t + 1
f*g
f%g

2 of 8

Math 521: Computational and Applied Algebra
Fall 2024

Sage tutorial

4 Data
There are many data types in Sage: integers, integers mod 5, complex numbers,
matrices, polynomials, etc.
x=5
x
print(x)
print(’x’)
x+3
(x,y) = (3,5)
y

Note that = denotes assignment; that is, the expression on the right is evaluated,
then assigned to the variable on the left.
x=3
x=x+1
x
x+=1
x
x-=2
x
g *= t
f *= t
gcd(f,g)

Lists are finite sequences of other data types. Elements of a list can be numbers,
strings, or even other lists.
li=[1,2,’apple’]
li[0]
li[2]
len(li)
li[len(li)]
li[len(li)-1]
li[1:2]
li[1:3]
li[1:]
li[:2]
m=li+li
m

As you can see, list operations are very intuitive.
We can define ideals using lists of generators.

I = R.ideal([f, g])
I
I.gens()

3 of 8

Math 521: Computational and Applied Algebra
Fall 2024

Sage tutorial

5 Booleans
We start with a single variable assignment (x = 3) and proceed with some
truth tests and more complex boolean functions (such as AND and OR). Note
the difference between = and ==.

x=3
x==3
x==2
x<3
x<4
x!=4
x!=3
x==3 and x<4
x==3 and x<2
x==3 or x<2
not (x==3 or x<2)
not x!=4

One handy trick that comes up when using control structures is that 0 and []
are equivalent to False, while all other values are considered True.

6 Control flow
Here’s a simple loop:

for i in range(10):
print(i)

I used a single Tab to indent the second line.
Observe the colon, indentation, and how the output relates to the bounds in

the range declaration. The notebook should take care of the indentation for you,
but only to a certain extent: to end the indentation, you have to press backspace
on a new line.

Another way of making loops is with while.

i=0
while i<10:

print(i)
i+=1

(Remember to hit enter twice after the last line!) What happens if you do the
same program, but with the last two lines reversed?

A common construction is to combine creating, reading, or changing a list
with a loop. In the case of a for loop,wemight have something like range(0,len(listname)).

The last control structure is the if/else declaration.

4 of 8

Math 521: Computational and Applied Algebra
Fall 2024

Sage tutorial

if i==11:
print(’bye’)
print(’time to go’)

else:
print(’twelve’)
print(’oops too late’)

The else is optional. One can also mimic the two loops above by combining if
with recursion, but in Python it doesn’t make sense to do so.

Exercise 1. Compute the 100th triangular number without the formula. Do
it in two different ways: using a for loop and a while loop.

Exercise 2. Given that the third Fibonacci number is 2, compute the 30th Fi-
bonacci number. (Hint: you will need more than one variable.)

Exercise 3. Create a list of the numbers 1 through 100; by “list”, I mean the
data type, so [1, 2, ..., 100]. Start with li = [].

7 Functions and syntax
We now figure out how to put everything together to write a program. As an
example, we’ll recreatemultiplication of positive integers; that is, given positive
integers a and b, we want to write a program which outputs the product of the
two using only addition.

7.1 Writing down the algorithm
The key to writing a program is answering the questions

• “What are we looping?” and

• “How do we know when to stop looping?”

We should first do this on paper! We write down what we want in plain
English:

1. Given a,b ∈ N.

2. Write down a on a paper b times.

3. Add together.

Okay, not too bad. However, this doesn’t answer either of our questions. For
the first question, in step 2 we are looping adding a each time. For the second
question, we stop once we’ve done b iterations. To implement the loop, we can
use for or while; for this example, I will use while.

1. Given a,b ∈ N.

5 of 8

Math 521: Computational and Applied Algebra
Fall 2024

Sage tutorial

2. Start a running total at 0.

(a) Add a to our running total.
(b) If we’ve done this b times, stop the loop.
(c) If not, go back to (a).

3. Output the running total.

Tomake the loopwork, we’ve introduced two newquantities: the running total,
and the number of times we’ve been in the loop. The first quantity we can call
p for product, while the second quantity is a counter related to b. The counter
can start at 0 and work its way up to b, or can start at b and count down to 0. I
will choose the latter, for reasons that will become apparent. When we do this,
the termination condition is that the counter reaches 0.

7.2 Typing up the program
To type up the program, press an Enter at the end of each line to get to the
next line, up until you are done with the program. Once you are, press Shift +
Enter to execute the program definition. Note that all flow declarations end in
a colon, and all instructions inside it are indented. The same formalism holds
for functions, as you can see below.

def dumb_multiply(a,b):
”””Multiply positive integers a and b.”””
p = 0
while b!=0:

(p,b) = (p+a, b-1)
return p

Note that our counter is b itself! To understand how the program works, I rec-
ommend choosing small values of input and try executing the program your-
self, on a piece of paper (not with the computer).

Once you’ve hit Shift + Enter, you’ve defined the function dumb_multiply
as a function of two arguments. On the next line of the notebook you can now
type, for example, dumb_multiply(5,8), and hit Shift + Enter to execute.

Note that the program endswith a return statement. Run on its own, return
acts just like print. However, return is superior because the output of return
can be used as the input of another program. Indeed, complex programs are
typically split into pieces, where one function will call the results of another.
Note however that a return statement, unlike print, ends the enclosing function
immediately.

Lastly, the variables a and b are localized, so even though their values are
changed inside the function, they are not changed outside of the function. That
is, if we did (with Shift + Enter after each line)

6 of 8

Math 521: Computational and Applied Algebra
Fall 2024

Sage tutorial

a=18
b=15
dumb_multiply(18,15)
b

then the value of b is still 15, even though the value of b appears to change inside
dumb_multiply.

7.3 Other commands
There’s a function-like construction in Python (and many other languages)
called a method. A method is a function associated to some data. You’ve seen
this beforewith ideals: an ideal has a gensmethod, which lists the defining gen-
erators. The syntax is always dataobject.method(). (Methods can sometimes
take inputs, which would be put inside the parentheses; most of the time we
will just leave the parentheses empty.) Here are some more useful methods:

f.degree()
f.leading_coefficient()

Plotting is pretty intuitive in Sage. Here’s an example; note that since y did
not have any meaning until now, we have to define it.

u = var(’u’)
implicit_plot(u^2 - t^3 + t, (t, -2, 5), (u, -5, 5))
p = parametric_plot((2*cos(t), 3*sin(t)), (t, 0, 2*pi))
show(p)

Sage can also do 3d plots. Look online for documentation and examples.

8 Comments and doc strings
Look at the second line of the dumb_multiply function above. The text inside
the triple quotes is called the doc string for the function. It provides a brief
description of the function, and is always a good idea to include. If you hover
over the name of a function later, a tooltip should appear with the first line of
the doc string.

Any text beginning with the hash symbol # is considered a comment; that
is, it is ignored by Sage. This is good to explain anything in your program that
might be hard to understand otherwise.

Exercise 4. Write a program that inputs nonzero f ∈ Q[x] and outputs the
leading term.

Exercise 5. Write a program that inputs f ∈ Q[x], n ∈ N and lists all integer
roots r of f in the range [−n,n].

7 of 8

Math 521: Computational and Applied Algebra
Fall 2024

Sage tutorial

Exercise 6. Write a program division_algorithm that implements the divi-
sion algorithm in Q[x]. Do not use % or //; use only +,-,*,/, degree, and
leading_coefficient. For instance, you should have

division_algorithm(x^3+1, x+2) = (x^2 - 2*x + 4, -7).

(Note that Sage will treat the quotient of two monomials as a rational
function even if it’s a polynomial. The easiest fix coerce it into the polyno-
mial ring: if that ring is R, R(q) treats it as an element of R.)

Exercise 7. The algorithm for gcd(f,g) is the same as over Z; namely, define
a sequence ri with r0 = f, r1 = g, then recursively define ri+1 as the
remainder when we divide ri−1 by ri. Use division_algorithm to write
mygcd (since gcd is taken). Your output should agree with the built-in gcd;
demonstrate.

9 Rules for turning in programs
When turning in programs,

• do not use any forbidden commands;

• upload your notebook file (which should have a .ipynb extension) to
Gradescope;

• make sure code runswithout errors, returns the correct results, andpasses
any assigned tests;

• make sure all programs have doc strings;

• copy and paste previously written code where appropriate; and

• when required, include a proof that the code is correct with your written
homework.

When you use previously written programs, clearly state what those programs
do in the doc string; specifically, the input and output of the programs. Of
course, that means that you should save your previous code, as it will be useful
throughout the course.

For homework, turn in exercises 4–7.

10 Further reading
This document is only meant to get you started. I encourage you to look online
for more details on programming in Python/Sage! I’d especially suggest look-
ing into lists (particularly list comprehension), printing, and the dictionary data
type.

8 of 8

	Getting started
	Basics of programming
	Putting the parts together

	Arithmetic
	Data
	Booleans
	Control flow
	Functions and syntax
	Writing down the algorithm
	Typing up the program
	Other commands

	Comments and doc strings
	Rules for turning in programs
	Further reading

