HW 6 Prof. Shahed Sharif

HW 6: §2.4/1, 7, 9; §2.5/1, 3a, 12, 13

- 2.4.9 I only cover well-ordered. It suffices to show that $(\alpha, \beta) \ge 0$ for all $(\alpha, \beta) \in \mathbb{Z}_{\ge 0}^n \times \mathbb{Z}_{\ge 0}^m$. If $\alpha >_{lex} 0$, then certainly $(\alpha, \beta) > 0$. If not, since lex is a monomial ordering, by Corollary 6 $\alpha = 0$. By the same Corollary, $\beta \ge_{grlex} 0$, and it follows that $(\alpha, \beta) \ge 0$.
- 2.5.3 Choose $m \in \langle LT(I) \rangle \setminus \langle LT(f_1), \dots, LT(f_s) \rangle$. By definition of $\langle LT(I) \rangle$, $\exists g \in I$ such that LT(g) = m. Let f be the remainder of g upon division by the f_i . As $LT(f_i) \nmid LT(g) = m$ for all i, we have that $f \neq 0$, since from the division algorithm LT(f) = m. The claim follows.
- 2.5.12 We will prove the contrapositive. Suppose there is an ideal I which is *not* finitely generated. Choose $f_1 \in I$. Inductively choose f_i as any element in $I \setminus \langle f_1, \ldots, f_{i-1} \rangle$; such an element must exist, since on the one hand $f_j \in I$ for $1 \leq j \leq i-1$ so $\langle f_1, \ldots, f_{i-1} \rangle \subset I$, but on the other hand we cannot have equality else I would be finitely generated. It follows that the $\langle f_1, \ldots, f_i \rangle$ form an ascending chain which does not stabilize.