HW 5 Prof. Shahed Sharif

Homework due 10/4: §2.2/4, 10, 11, 12; §2.3/3 (for us, "check" \rightarrow "compute"), 5, 9

2.2.4 For total ordering, the total degree is the usual ordering on $\mathbb{N} \cup \{0\}$, and since ties are broken by lex, which we know to be total, grlex is also a total ordering.

For additivity, note that $|\alpha + \gamma| = |\alpha| + |\gamma|$ for all exponent vectors α, γ . Thus if $|\alpha| > |\beta|$, then $|\alpha + \gamma| > |\beta + \gamma|$. In the case of ties, the total degree is still tied after adding γ . Additivity in this case follows from additivity of lex.

Finally we show grlex is a Well-Ordering. Let S be a nonempty set of exponent vectors. The set of total degrees of S is a subset of $\mathbb{N} \cup \{0\}$, which is Well-Ordered, and hence there is a lowest total degree d amongst elements of S. Let $S_d \subset S$ be the set of exponent vectors with total degree d; it is nonempty by definition of d. Within S_d , grlex is equivalent to lex, which is a Well-Ordering. Hence there is a least element α of S_d . Note that for $\beta \in S - S_d$, $\alpha < \beta$ as well since $|\beta| > d = |\alpha|$, so α is in fact the least element of S.

2.2.11 Let $f = \sum_{\alpha \in A} c_{\alpha} x^{\alpha}$, and let $\alpha_0 \in A$ be the largest element of A, so that $\alpha < \alpha_0$ for $\alpha \in A - \{\alpha_0\}$. For (a), let $m = x^{\gamma}$. Then

$$\mathfrak{m} \mathfrak{f} = \sum_{\alpha \in A} c_{\alpha} x^{\alpha + \gamma}.$$

As $\alpha_0 + \gamma > \alpha + \gamma$ for $\alpha \in A - \{\alpha_0\}$, the leading term is $c_{\alpha_0} x^{\alpha_0 + \gamma}$, from which the claim follows.

For (b), this is true. Let $g = \sum_{\beta \in B} d_{\beta} x^{\beta}$ with leading term $d_{\beta_0} x^{\beta_0}$. Then

$$\mathsf{fg} = \sum_{\substack{\alpha \in A \\ \beta \in B}} c_{\alpha} \mathsf{d}_{\beta} x^{\alpha + \beta}$$

For $\alpha \neq \alpha_0$, $\beta \neq \beta_0$,

$$\alpha_0 + \beta_0 > \alpha + \beta_0 \\ > \alpha + \beta$$

via additivity. Similarly, $\alpha_0 + \beta_0 > \alpha_0 + \beta$. Therefore the leading term of fg is $c_{\alpha_0} d_{\beta_0} x^{\alpha_0 + \beta_0}$, from which the claim follows.

For (c), this is false: under the usual degree, take s = 2, $f_1 = x + 1$, $f_2 = x$, $g_1 = 1$, $g_2 = -1$.

2.3.3 The answers, grlex then lex, are:

1a :
$$x^7 + x^3 - y + 1$$
, $2y^3 - y + 1$
1b : $x^7 + x^3 - y + 1$, $y^{23} + y^{11} - y + 1$
2a : $x^2 + xy - yz$, *z* for all 3 permutations