HW 1 Selected Solutions

Prof. Shahed Sharif

- 6 For a, take $V(x_1 a_1, ..., x_n a_n)$. For b, a finite set is a finite union of single points. By a, each single point is a variety, and by 15a, finite unions of varieties are varieties. The claim follows.
- 7 Let $P = (x_0, y_0) = (r_0; \theta_0)$. For a, suppose P is on the four-leaved rose, so that $r_0 = \sin 2\theta_0 = 2 \sin \theta_0 \cos \theta_0$. Multiplying through by r_0^2 , we obtain

$$\mathbf{r}_0^3 = 2\mathbf{r}_0 \sin \theta_0 \mathbf{r}_0 \cos \theta_0.$$

Squaring both sides, we get $r_0^6 = 4(r_0 \sin \theta_0)^2 (r_0 \cos \theta_0)^2$, which implies that $(x_0^2 + y_0^2)^3 = 4x_0^2y_0^2$. This is precisely the equation for the given variety, and so P lies on that variety.

For b, say P is on the affine variety, so that $(x_0^2 + y_0^2)^3 = 4x_0^2y_0^2$. If P is the origin, then certainly P lies on four-leaved rose. Therefore assume otherwise; in particular, $r_0 = \sqrt{x_0^2 + y_0^2} \neq 0$. Then we get $r_0^6 = 4(r_0 \sin \theta_0)^2(r_0 \cos \theta_0)^2$. As $r_0 \neq 0$, we can divide out to get

$$r_0^2 = 4\sin^2\theta_0\cos^2\theta_0.$$

Thus we have $r_0 = \pm 2 \sin \theta_0 \cos \theta_0 = \pm \sin 2\theta_0$. But notice that the fourleaved rose has 180° symmetry (for instance, the map $\theta \mapsto \theta + \pi$ leaves the r unchanged). Therefore if $(r_0; \theta_0)$ satisfies either equation, P is on the four-leaved rose.

15a We showed the case of 2 varieties. Let us consider the inductive step for unions. Suppose the union of n-1 varieties is a variety. Let V_1, \ldots, V_n be varieties. We have

$$V_1 \cup V_2 \cup \cdots \cup V_n = (V_1 \cup V_2 \cup \cdots \cup V_{n-1}) \cup V_n.$$

By inductive hypothesis, the parenthetical term is a variety; call it W. By the n = 2 case, $W \cup V_n$ is a variety. The claim follows.

The argument for intersections is similar.

15b For a ∈ ℝ, let $V_a = V(x - a) = \{a\} ⊂ ℝ$. I claim that $W = \bigcup_{a \neq 0} V_a = ℝ - \{0\}$. This is an infinite union of varieties. Suppose that *W* is a variety; say $W = V(f_1, ..., f_s)$ where $f_1, ..., f_s ∈ ℝ[x]$. For each i, we get that $f_i(a) = 0$ for all a ∈ W, and hence f_i has infinitely many roots. This implies that f_i is the zero polynomial. Thus W = V(0). But V(0) = ℝ ≠ W, so we have a contradiction. It follows that *W* is not an affine variety.