Worksheet 21

- 1. Let $R = \mathbb{Z} \times \mathbb{Z}$. Find all elements $x \in R$ which satisfy $x^2 = x$.
- 2. Define $\mathbb{Z}[D_6]$ to be the set

$$\left\{\sum_{\alpha\in D_6}c_\alpha\alpha:c_\alpha\in\mathbb{Z}\right\}.$$

Write 1 for the element $1 \cdot e$.

- (a) Take $x = 2 \tau$ and $y = \tau + \sigma \tau 3\sigma^2$. Compute x + y and xy using the natural operations.
- (b) The set Z[D₆] forms a ring under the two natural operations; you may assume this going forwards. Show that Z[D₆] is *not* commutative.
- (c) Show that $\mathbb{Z}[D_6]$ is not an integral domain.
- 3. Define $(\mathbb{Z}/3\mathbb{Z})[D_6]$ to be the set

$$\left\{\sum_{\alpha\in D_6}c_{\alpha}\alpha:c_{\alpha}\in\mathbb{Z}/3\mathbb{Z}\right\}.$$

Consider it to be a ring in a similar manner as $\mathbb{Z}[D_6]$. Show that $\exists x \in (\mathbb{Z}/3\mathbb{Z})[D_6]$ for which $x \neq 0$, but $x^3 = 0$.