Worksheet §0

- 1. Each of the following statements is false. Find a counterexample. Make sure to justify that your counterexample is, in fact, a counterexample!
 - (a) If a function is injective, then it is surjective.
 - (b) If a function is surjective, then it is injective.
 - (c) For any sets A and B, suppose $f:A\to B$ and $g:B\to A$ are functions for which $f\circ g=id_B.$ Then f is a bijection.
- 2. Prove that $\forall k \ge 0$,

$$\frac{1}{2^1} + \frac{1}{2^2} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^{k+1}}.$$

3. Define T(n) for $n \ge 0$ by

$$T(n) = \begin{cases} 1 & \text{if } n = 0\\ \sum_{k=0}^{n-1} T(k) & \text{if } n \ge 1 \end{cases}$$

Find an explicit formula for T(n), and prove it.