HW 9 Selected solutions
 Prof. Shahed Sharif

2.78 If the two elements are τ_{1}, τ_{2}, define $\sigma=\tau_{1} \tau_{2}$ and set $\tau=\tau_{1}$. Since G is finite, σ has finite order; call this order n. Now I just need to show that σ, τ satisfy the same relations as $D_{2 n}$, and then by definition G will "be" $D_{2 n}$. Since $\tau_{2}=\tau^{-1} \sigma$, we have $\tau_{2} \in\langle\tau, \sigma\rangle$, and so $\langle\tau, \sigma\rangle \supset\left\langle\tau_{1}, \tau_{2}\right\rangle=G$. Therefore σ and τ generate G. We already have $\sigma^{n}=e$ and $\tau^{2}=e$. We have

$$
\begin{aligned}
\tau \sigma & =\tau_{1} \tau_{1} \tau_{2} \\
& =\tau_{2}
\end{aligned}
$$

while

$$
\begin{aligned}
\sigma^{-1} \tau & =\left(\tau_{1} \tau_{2}\right)^{-1} \tau_{1} \\
& =\tau_{2} \tau_{1} \tau_{1} \\
& =\tau_{2} .
\end{aligned}
$$

Thus $\tau \sigma=\sigma^{-1} \tau$. The claim follows.
2.79 Use Prop 2.95 and the proof of Prop 2.97.
2.85 These can be done by table. Alternatively, the first one can be done in a similar way as last week's A.
2.86 Straightforward from the definitions.
2.90 For $g \in G$, if $\pi(g)=\prod_{i}^{n} x_{i}^{\varepsilon_{i}}$ (for some $n, \varepsilon_{i}= \pm 1$), show that $g^{-1} \prod g_{x_{i}}^{\varepsilon_{i}} \in T$.
2.97 Suppose $x, y \in G_{m}$. Then $m x=m y=0$, so $m(x+y)=m x+m y=0$, and hence $x+y \in G_{m}$. As the order of $-x$ is the same as that of x, we see that G_{m} is closed under inversion. Clearly $0 \in G_{m}$. Thus G_{m} is a subgroup. A similar argument holds for G_{n}.
Certainly $0 \in G_{m} \cap G_{n}$. Let $x \in G_{m} \cap G_{n}$. Then the order of x divides both m and n. But $\operatorname{gcd}(m, n)=1$, so order $(x)=1$, and hence $x=0$. Therefore $\mathrm{G}_{\mathrm{m}} \cap \mathrm{G}_{\mathrm{n}}=\{0\}$.
We have $\mathrm{G}_{\mathrm{m}}+\mathrm{G}_{\mathrm{n}} \subset \mathrm{G}$. Let $\mathrm{g} \in \mathrm{G}$. By the corollary to Lagrange's theorem, mn is a period of g , so $\mathrm{mng}=0$. By the Euclidean algorithm, $\exists \mathrm{a}, \mathrm{b} \in \mathbb{Z}$ such that $a m+b n=1$. Let $g_{1}=b n g$ and $g_{2}=a m g$. I claim that $g_{1} \in G_{m}$, $g_{2} \in G_{n}$, and $g_{1}+g_{2}=g$. We have $\mathrm{mg}_{1}=b(m n g)=0$, so $g_{1} \in G_{m}$; a similar argument shows that $g_{2} \in G_{n}$. Finally,

$$
\begin{aligned}
\mathrm{g}_{1}+\mathrm{g}_{2} & =\mathrm{bng}+\mathrm{amg} \\
& =(\mathrm{am}+\mathrm{bn}) \mathrm{g} \\
& =1 \cdot \mathrm{~g} \\
& =\mathrm{g} .
\end{aligned}
$$

Therefore $G \subset G_{m}+G_{n}$, and so we have equality.
Finally, define $\varphi: G_{m} \times G_{n} \rightarrow G$ by $\varphi\left(g_{1}, g_{2}\right)=g_{1}+g_{2}$. This is a homomorphism; the proof is straightforward, and omitted. By the previous part, φ is surjective. Finally, suppose $\left(g_{1}, g_{2}\right) \in \operatorname{ker}(\varphi)$. Then $g_{1}+g_{2}=0$, so $g_{2}=-g_{1} \in G_{m}$, and hence $g_{2} \in G_{m} \cap G_{n}$. By the first part, $g_{2}=0$, and so $g_{1}=0$ too. This shows that $\operatorname{ker}(\varphi)$ is trivial, and so φ is injective. It follows that φ is an isomorphism.
A. Direct computation.
B. Actually, the problem is incorrect as written: we need $n \geq 3$. Once we have that, observe that $(23) \in H$, but

$$
(12)(23)(12)^{-1}=(13) \notin \mathrm{H},
$$

which shows that H is not normal. If $\sigma \in H$, then σ restricted to $\{2,3, \ldots, n\}$ is a permutation, and is determined by this permutation. Therefore $\# H=$ $(n-1)!$. By Lagrange's Theorem, there are $\# S_{n} / \# H=n!/(n-1)!=n$ cosets. I claim that for $i=1, \ldots, n,(1 i)$ is a complete system of representatives (where (11) means the identity). Since there are n elements in my list, it suffices to show that no two are in the same coset. For assume $\mathfrak{i} \neq \mathfrak{j}$. Without loss of generality $j \neq 1$. Then we have

$$
\begin{aligned}
(1 i)^{-1}(1 j)(1) & =(1 j i)(1) \\
& =j \neq 1
\end{aligned}
$$

and therefore $(1 i)^{-1}(1 j) \notin H$, and so are in different cosets.
C. Recall the definition of union.

