HW 8 Hints and selected solutions

Prof. Shahed Sharif

2.65 Observe that $\gamma_{b}(a b)=b a b b^{-1}=b a$, so that $a b$ and ba are conjugate. The result follows from Prop 2.92(ii).
2.69 Show $\forall \mathrm{b} \in \mathrm{G}, \mathrm{bHb}^{-1} \subset \mathrm{H}$ directly.
2.71 Remember our characterization of conjugation in S_{n}.
2.82 Just mechanically apply the definitions for all of these.
A. Let G be cyclic of order n; say $G=\langle g\rangle$. Define $\varphi: \mathbb{Z}_{n} \rightarrow G$ by $\varphi(i)=g^{i}$. This is well-defined, since if $\mathfrak{i} \equiv \mathfrak{j}(\bmod n)$, we have $\mathfrak{j}=\mathfrak{i}+k n$ for some $k \in \mathbb{Z}$, and

$$
\begin{aligned}
\varphi(j) & =g^{i+k n} \\
& =g^{i} g^{k n} \\
& =g^{i}\left(g^{n}\right)^{k} \\
& =g^{i} .
\end{aligned}
$$

To show that this is a homomorphism, observe that $\varphi(h+i)=g^{h+i}=$ $g^{h} g^{i}=\varphi(h) \varphi(i)$. Next, we compute the kernel. Suppose $\varphi(i)=e$. Then $g^{i}=e$, so $n \mid \mathfrak{i}$; but then $\mathfrak{i} \equiv 0(\bmod n)$. Thus $\operatorname{ker}(\varphi)$ is trivial, and so φ is injective. Both G and $\mathbb{Z}_{\mathfrak{n}}$ have cardinality \mathfrak{n}, and so by the Pigeonhole Principle, φ is surjective.
For the second part, we just need to show that \mathbb{Z}_{11}^{\times}is cyclic (and has order 10; this part is easy just be listing elements). I claim 2 is a generator. From Lagrange's Theorem, we know that the order is $1,2,5$, or $10.2^{2} \equiv 4$ $(\bmod 11)$ while $2^{5}=32 \equiv 10(\bmod 11)$. By process of elimination, the order of 2 is 10 , and so $\mathbb{Z}_{11}^{\times}=\langle 2\rangle$, and the claim follows.
B. Don't forget the easy subgroups.
C. Show that first group is not cyclic.
D. These groups are small; specifying the isomorphism with a table is a good way to do this.
E. $\mathbb{Z}_{12}, \mathbb{Z}_{2} \times \mathbb{Z}_{6}, D_{12}, A_{4}$ are pair-wise non-isomorphic, so any 3 will do the trick. To prove it, observe that the first two are abelian, and the last two are not, so neither of the first two can be isomorphic to either of the last two.
The group \mathbb{Z}_{12} has an element of order 12 (namely 1), but for $(a, b) \in$ $\mathbb{Z}_{2} \times Z_{6}, 6(a, b)=(6 a, 6 b)=(0,0)$, so there is no element of order bigger than 6 . Thus the first two groups are nonisomorphic.
For the last two, observe that $\sigma \in D_{12}$ has order 6 , but in A_{4}, there are no elements of order 6: the cycle type would have to contain a 6 cycle, or at
least one 2 cycle and one 3 cycle. But any element in A_{4} can only move up to 4 elements, so neither cycle type can occur.

