HW 7 Selected Solutions
 Prof. Shahed Sharif

2.59i We showed in class that the order of $b:=f(a)$ divides the order of a. Since f is an isomorphism, it is also true that the order of $a=g(b)$ divide the order of b. If the order of either a or b is finite, this implies the orders are equal. If one has infinite order and the other has finite order, this would contradict the previous sentence. Therefore if a has infinite order, so does $f(a)$.
2.68 For $f(x) \in G$, we may write $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ for some n, and with $a_{i} \in \mathbb{Z}$ for all i. Let $p_{0}, p_{1}, p_{2}, \ldots$ be a listing of the prime numbers (for instance, $p_{0}=2, p_{1}=3, p_{2}=5$, etc; the specific choice doesn't matter). Then any $\mathrm{r} \in \mathrm{H}$ can be written uniquely as

$$
p_{0}^{e_{0}} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}
$$

for some n and with $e_{i} \in \mathbb{Z}$ for all i; for instance, we have $\frac{12}{25}=2^{2} 3^{1} 5^{-2}$. (This result is an extension of prime factorization from \mathbb{N} to positive rationals.) Define $\varphi: \mathrm{G} \rightarrow \mathrm{H}$ by

$$
\varphi\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=p_{0}^{a_{0}} p_{1}^{a_{1}} \cdots p_{n}^{a_{n}}
$$

This is certainly well-defined and surjective.
We show that φ is a homomorphism. For let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$. Without loss of generality, $m \leq n$. If $m<n$, then define b_{i} for $m<i \leq n$ by $b_{i}=0$; this allows us to write $g=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$. (For instance, if $f=1+x+x^{2}$ and $g=2-3 x$, we have $m=1<2=n$, so we define $b_{2}=0$, in effect writing $g=2-3 x+0 x^{2}$.) We then have

$$
\begin{aligned}
\varphi(f+g) & =\varphi\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}\right) \\
& =p_{0}^{a_{0}+b_{0}} p_{1}^{a_{1}+b_{1}} \cdots p_{n}^{a_{n}+b_{n}} \\
& =p_{0}^{a_{0}} p_{1}^{a_{1}} \cdots p_{n}^{a_{n}} p_{0}^{b_{0}} \cdots p_{n}^{b_{n}} \\
& =\varphi(f) \cdot \varphi(g)
\end{aligned}
$$

Finally, suppose $f \in \operatorname{ker}(\varphi)$; that is, $\varphi(f)=1$. By the uniqueness of prime factorization of rationals, we must have that the exponents in $1=p_{0}^{e_{0}} \cdots p_{n}^{e_{n}}$ are all 0 , and hence the coefficients of f are all 0 , so that $f=0$. $\operatorname{As} \operatorname{ker}(\varphi)$ is trivial, φ is injective.
The claim follows.
D. We define a map $\varphi: \mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ via $\varphi([x])=([x],[x])$. Note that the brackets mean 3 different things; for clarity, we can write this as

$$
\varphi\left([x]_{6}\right)=\left([x]_{2},[x]_{3}\right)
$$

but I will often omit the subscripts where the reader can deduce them.
We first show that φ is well defined; that is, if $[x]_{6}=[y]_{6}$, then $\left([x]_{2},[x]_{3}\right)=$ $\left([y]_{2},[y]_{3}\right)$. Well, $[x]_{6}=[y]_{6}$ means $x \equiv y(\bmod 6)$, or $6 \mid(x-y)$. But this implies $2 \mid(x-y)$, so $[x]_{2}=[y]_{2}$, and $3 \mid(x-y)$, so $[x]_{3}=[y]_{3}$. Therefore $\left([x]_{2},[x]_{3}\right)=\left([y]_{2},[y]_{3}\right)$.
Next we show that φ is a homomorphism. We have

$$
\begin{aligned}
\varphi([x]+[y]) & =\varphi([x+y]) \\
& =([x+y],[x+y]) \\
& =([x]+[y],[x]+[y]) \\
& =([x],[x])+([y],[y]) .
\end{aligned}
$$

Next, we compute $\operatorname{ker}(\varphi)$. We have $\varphi([x])=(0,0)$ if and only if $[x]_{2}=0$ and $[x]_{3}=0$. The first equality means $x \equiv 0(\bmod 2)$, or $2 \mid x$. The second equality means $3 \mid x$. Therefore $6=\operatorname{lcm}(2,3) \mid 6$, so $x \equiv 0(\bmod 6)$, or in other words $[x]_{6}=0$. Thus $\operatorname{ker}(\varphi)$ is trivial, and therefore φ is injective.

Finally, $\# \mathbb{Z}_{6}=6=2 \cdot 3=\#\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right)$. By the Pigeonhole Principle, φ is also surjective, and hence bijective. Therefore it is an isomorphism.

