HW 6 Selected solutions
 Prof. Shahed Sharif

2.55 For (i), let $\alpha=(23)$. We have $\langle(12)\rangle=\{(1),(12)\}$, and so

$$
\alpha\langle(12)\rangle=\left\{(23),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\}
$$

while

$$
\langle(12)\rangle \alpha=\{(23),(123)\}
$$

Observe that these are unequal.
For (ii), let G / H be the set of left cosets and $H \backslash G$ the set of right cosets. We will construct a bijection between them; namely, define

$$
\mathrm{f}: \mathrm{G} / \mathrm{H} \rightarrow \mathrm{H} \backslash \mathrm{G}
$$

by $f(a H)=H a^{-1}$. I first show that this is well-defined; that is, if $a H=b H$, I need $\mathrm{Ha}^{-1}=\mathrm{Hb}^{-1}$. From $\mathrm{aH}=\mathrm{bH}$, we have $a \in b H$, so $\exists h \in H$ such that $a=b h$. Inverting both sides, we obtain $a^{-1}=h^{-1} b^{-1}$. As $h^{-1} \in H$ since H is a subgroup, we see that $h^{-1} b^{-1} \in H b$, and so $a^{-1} \in H b$. Since the right cosets form a partition of G, this means that $\mathrm{Ha}^{-1}=\mathrm{Hb}^{-1}$. Thus f is well-defined.

Finally, we need to show that f is bijective. I claim that the inverse is given by $g(\mathrm{Hb})=b^{-1} \mathrm{H}$. The map g is well-defined by a similar argument as for f. We also have $g(f(a H))=g\left(H a^{-1}\right)=\left(a^{-1}\right)^{-1} H=a H$, and the other direction is similar. Thus f and g are inverses. Therefore f is a bijection, and so the number of left and right cosets is the same.
There is another way of doing this problem: both left and right cosets form a partition. We know each left coset has the same cardinality as H. It turns out a similar argument shows every right coset has the same cardinality as H (exercise). Then by the proof of Lagrange's Theorem, the number of right cosets is \#G/\#H; but this is the same as the number of left cosets.
2.66 We showed (i) in class. For (ii), let $x \in G$ and let $y=f(x)$. From part (i), we know that $\operatorname{order}(\mathrm{y}) \mid \operatorname{order}(x)$. From the corollary to Lagrange's Theorem, $\operatorname{order}(x) \mid \# G$, so order $(\mathrm{y}) \mid \# G$. Similarly, $\operatorname{order}(\mathrm{y}) \mid \# H$. Thus, order (y) is a common divisor of \#G and \#H. It follows that $\operatorname{order}(\mathrm{y})=1$, and hence $y=1$. The claim follows.
C. Let Let $x, y \in G$. Then

$$
\begin{aligned}
\varphi(x * y) & =\varphi(x+y+1) \\
& =x+y+2
\end{aligned}
$$

while

$$
\begin{aligned}
\varphi(x)+\varphi(y) & =(x+1)+(y+1) \\
& =x+y+2 .
\end{aligned}
$$

Therefore it is a homomorphism. (Now that we know isomorphisms, it is a good exercise to show that φ is in fact an isomorphism.)

