HW 5 Selected Solutions
 Prof. Shahed Sharif

2.38 The condition $x^{2}=e$ is equivalent to $x=x^{-1}$. Let $a, b \in G$. Then we have $a^{-1}=a, b^{-1}=b$, and $(a b)^{-1}=a b$. But

$$
\begin{aligned}
(a b)^{-1} & =b^{-1} a^{-1} \\
& =b a
\end{aligned}
$$

Therefore $a b=b a$. The claim follows.
A. We have $e(1)=1$ by definition of the identity, so $e \in H$. Suppose $\alpha \in H$. Then $\alpha(1)=1$. Applying α^{-1} to both sides, we obtain $1=\alpha^{-1}(1)$, which shows that $\alpha^{-1} \in H$. Thus H is closed under inversion. Suppose $\alpha, \beta \in H$. Then $\alpha(1)=\beta(1)=1$. We have

$$
\begin{aligned}
(\alpha \beta)(1) & =\alpha(\beta(1)) \\
& =\alpha(1) \\
& =1
\end{aligned}
$$

Therefore $\alpha \beta \in \mathrm{H}$.
E. The set of rotations is $\langle\sigma\rangle$. Since this is a cyclic subgroup, it is a subgroup! You can prove it directly of course: $\sigma^{0}=e \in\langle\sigma\rangle$; for $\sigma^{i} \in\langle\sigma\rangle,\left(\sigma^{i}\right)^{-1}=$ $\sigma^{-i} \in\langle\sigma\rangle ;$ and $\sigma^{i} \sigma^{j}=\sigma^{i+j}$ proves closure.
The set of reflections are those elements of the form $\sigma^{i} \tau$. This set does not contain the identity, nor is it closed: $(\sigma \tau) \cdot(\tau)=\sigma$, which is a rotation, not a reflection.
F. If $3 \nmid n$, then this set is just the identity. If $3 \mid n$, then this set is $\left\langle\sigma^{n / 3}\right\rangle=$ $\left\{e, \sigma^{n / 3}, \sigma^{2 n / 3}\right\rangle$. To prove this, first note that $\# D_{2 n}=2 n$, so if $3 \nmid n$, then $3 \nmid \# D_{2 n}$. By the corollary to Lagrange's Theorem, there are no elements of order 3 in $D_{2 n}$. There is always exactly one element of order 1 (and hence period 3); namely the identity.
Now suppose $3 \mid n$. There are two types of elements of $D_{2 n}$: rotations and reflections. Reflections all have order 2, and so they are out. The set of rotations is $\langle\sigma\rangle$. By part C, the elements of order 3 are those of the form σ^{k} where

$$
\frac{n}{\operatorname{gcd}(k, n)}=3
$$

Thus k must be a multiple of $n / 3$, and the conclusion follows.

