
Math 470 Spring 2025

HW 5
Due: Tuesday, March 4

Do exercises 2/33, 34, 36, 38, 40, and the following:

A. Show that if G is an abelian group, g,h ∈ G, g has order m and h has order n,
then gh has order lcm(m,n).

B. Let n ≥ 2 be an integer. Let U(n) = {[a] ∈ Z/nZ : gcd(a,n) = 1}. List all
elements of U(5), U(12), and U(15).

C. Prove that U(n) is a group.

D. Construct the multiplication table for U(8).
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Chapter 2 Solutions

Proposition 1 (Exercise 2.33). The number of elements of order 2 in Sn is given by
the sum:

m∑
i=1

(2i)!

i!2i

(
n

2i

)
where m is the largest integer such that 1 ≤ 2m ≤ n.

Proof. We observe that determining the number of elements of order 2 for any per-
mutation group Sn, also determines how many elements of order 2 there are in S5

and S6. So, we begin with the general case.
It follows from previous results that if a permutation has order two the cycles in

its complete factorization have at most order two. Thus, each factor is of order two or
order 1. Thus, to find the number of all permutations of order two, it suffices to count
the number of possible products of disjoint 2 cycles, where order doesn’t matter.

First, we want the number of ways to choose k disjoint transpositions from Sn.
We observe that in k transpositions there are 2k many symbols. We need to choose
this collection of 2k to be distinct (so they don’t repeat) and if they occur in different
orders we will still consider it the same collection. Thus, there are

(
n
2k

)
many ways

to choose 2k symbols from a bank of n symbols in this way. Moreover, we must now
choose the number distinct strings we can make with these symbols that correspond
to k disjoint cycles. Thus, we must choose a string of symbols without repetition,
which yields 2k!. However, we care about arrangements, just in a very specific way.
We do not want transposition and there inverse to be counted as distinct in different
strings. Because disjoint cycles commute we have to divide by k!. Then secondly, we
remove the strings with inverses by dividing by two for each possible transposition.
Thus, we have (2k)!

k!2k
many ways to choose a string of 2k symbols that corresponds to

a product of k disjoint cycles. Then altogether this gives us the following formula:

(2k)!

k!2k

(
n

2k

)
=

(2k)!

k!2k
n!

(2k)!(n− 2k)!

=
1

k!

1

2k

[
n · · · (n− 2k + 1)

]
Given that we are looking for the number of elements of order 2 in Sn, it follows

that this number is given by the sum

m∑
i=1

(2i)!

i!2i

(
n

2i

)
(1)

where m is the largest integer such that 2m ≤ n. We see that for each i, (2i)!
i!2i

(
n
2i

)
gives the number of permutations of order 2 that can be completely factored into i
transpositions, so the sum the finds the total number of permutations with complete



factorizations made of transpositions that are possible in Sn. Thus, the sum (1) is
the number we were searching for. For S5 this sum is

(2)!

1!21

(
5

2

)
+

(4)!

2!22

(
5

4

)
= 10 + 15 = 25.

For S6 this sum is

(2)!

1!21

(
6

2

)
+

(4)!

2!22

(
6

4

)
+

(6)!

3!23

(
6

6

)
= 15 + 3 · 15 + 15 · 1 = 75.

■

Proposition 2 (Exercise 2.34). Let y be a group element of order m; if m = pt for
some prime p, prove that yt has order p.

Proof. Since y has order m, it follows that ytp = ym = e, where e is the identity
element of the group. By Proposition 2.51, (yt)p = e.

Now we must show that p is the smallest positive integer n such that (yt)n = e.
Suppose there exists some positive integer n such that (yt)n = e. It follows that
ynt = e. Thus, by Lemma 2.53, pt|nt, so p|n. Thus, p ≤ n. Since n was chosen to
be arbitrary, this shows that p divides all periods of yt. Thus, p is the order of yt, by
Lemma 2.53. ■

Proposition 3 (Exercise 2.36). Let G = GL(2,Q), and let

A =

(
0 −1
1 0

)
and B =

(
0 1
−1 1

)
Then A4 = I = B6 where I is the identity matrix, but (AB)n ̸= I for all n > 0.

Proof. We find the order of A and B through direct calculation below.

A2 =

(
−1 0
0 −1

)
A3 =

(
0 1
−1 0

)
A4 =

(
1 0
0 1

)
= I



B2 =

(
−1 1
−1 0

)
B3 =

(
−1 0
0 −1

)
B4 =

(
0 −1
1 −1

)
B5 =

(
1 −1
1 0

)
B6 =

(
1 0
0 1

)
= I

Observe that

AB =

(
1 −1
0 1

)
.

Then we proceed with a proof by induction on n. We claim that

(AB)n =

(
1 −n
0 1

)
.

Observe that

(AB)2 =

(
1 −2
0 1

)
.

Then we assume that

(AB)k−1 =

(
1 −(k − 1)
0 1

)
for some k ∈ N with k > 3. Using the exponent laws, we see that

(AB)k = (AB)(AB)k−1 =

(
1 −1
0 1

)(
1 −(k − 1)
0 1

)
=

(
1 −k
0 1

)
.

Thus, (AB)n =

(
1 −n
0 1

)
for all n > 0. It follows there does not exist any n ∈ N

such that (AB)n = 1. Hence, AB has no finite order. ■

Proposition 4 (Exercise 2.38). Let G be a group. Suppose that x2 = e for all x ∈ G
where e is the group identity. Then G is abelian.

Proof. Let x, y ∈ G. We note that yx ∈ G, because G is a group. By the hypothesis,
we see that, x2 = y2 = (yx)2 = e. Thus,

xy = y2xyx2 = y(yx)2x = yx

by the associativity of the group operation. Since x and y were chosen to be arbitrary,
it follows that G is abelian. ■



Lemma 5 (Page 133.). An element g ∈ G has order 2 if and only if g ̸= e and
g = g−1.

Proof. Suppose that g ∈ G has order 2. Then g2 = e. Multiplying both sides by g−1

we see that, g = g−1. Moreover, if g = e then g has order 1 which contradicts the
hypothesis. Now suppose that g is not the identity and g = g−1. Multiplying both
sides by g yields, g2 = e. So, the claim is proven. ■

Proposition 6 (Exercise 2.40). If G is a group with an even number of elements
then the number of elements in G of order 2 is odd. In particular, G must contain
an element of order 2.

Proof. If G has an even number of elements then G − {e} has an odd number of
elements. Let g ∈ G − {e}. Then g has a unique inverse by Proposition 2.45. We
observe that if g−1 ̸∈ G−{e} then g−1 = e, but then g = e by Proposition 2.45. This
contradicts our choice of g. Thus, g−1 ∈ G−{e}. Since G is arbitrary, it follows that
every element in G− {e} has an inverse in G− {e}.

Say that N is the set of all elements in G−{e} that do not have order 2. Thus, N
has an even number of elements, since each element comes in a pair with it’s unique
inverse. This implies that (G− {e})−N has an odd number of elements. Moreover,
we observe that (G − {e}) − N is the set of all elements that are not e and are not
an element that does not have order 2. This implies that (G− {e})−N is the set of
elements of order 2 in G. The claim has been proven. ■

Non-Text Solutions

Proposition 7 (Exercise A). Let G be an abelian group. Suppose that g, h ∈ G such
that g has order m and h has order n. Then gh has order lcm(m,n).

Proof. Let L = lcm(m,n). By Lemma 2.53, gL = e and hL = e. By the commutativity
of G,

(gh)L = gLhL = e.

Choose some other number N ≤ L such that (gh)N = e. Then gNhN = e. Thus,
gN = (hN)−1. This implies that g = h−1. Since h−1 has the same order as h, it
follows that m|N and n|N . Then N is a common multiple of m and n by Lemma
2.53. Thus, L ≤ N . It follows that N = L. ■

Proposition 8 (Exercise B). Let n ≥ 2 be an integer. Let U(n) = {[a] : Z/nZ :
gcd(a, n) = 1}. Then list all of the elements of U(5), U(12), and U(15).

Proof.
U(5) = {[1], [2], [3], [4]}

U(12) = {[1], [5], [7], [11]}



U(15) = {[1], [2], [4], [7], [8], [11], [13], [14]}
■

Proposition 9 (Exercise C). Prove that U(n) is a group under multiplication. Where
we define

[a][b] = [ab].

Proof. Since modding out forms an equivalence relation on the integers, we know that
the group operation is well defined. Associativity is inherited from multiplication on
the integers as well.

Observe that gcd(1, n) = 1 for any positive integer. Thus, [1] ∈ U(n). Moreover,
[1][a] = [a] for all [a] ∈ U(n) because 1 · a = a for all a ∈ Z. Thus, U(n) has an
identity. So, the only thing left to show is that every element has an inverse.

Suppose that [a] ∈ U(n). We observe that a ̸= 0, else gcd(0, n) = n. By Theorem
1.32, there exists integers x and y such that ax+ ny = 1. Taking the whole equation
modulo n, gives us that ax ≡ 1 mod n. Thus, x = a−1. It’s possible that x is nega-
tive but since every negative integer belongs to an equivalence class with a positive
representative we can assume that x > 0.

Say that gcd(x, n) = d. Thus, d|ax + ny. Hence, d|1. But then d = 1. Thus,
a−1 ∈ U(n). It follows that U(n) is a group. ■

Proposition 10 (Exercise D). Construct the multiplication table for U(8).

Proof. We observe that U(8) = {[1], [3], [5], [7]}.
“·” [1] [3] [5] [7]
[1] [1] [3] [5] [7]
[3] [3] [1] [7] [5]
[5] [5] [7] [1] [3]
[7] [7] [5] [3] [1]

■


