HW 4 Selected Solutions Prof. Shahed Sharif

2.22 Write $\alpha = (i_0 i_1 \dots i_{r-1})$ with the i_k distinct. According to the hint, we would like to show that $\alpha^k(i_0) = i_k$ for $0 \le k \le r-1$. We do this by induction. The base case of k = 0 is clear. Suppose $\alpha^k(i_0) = i_k$ for some $0 \le k \le r-2$. Then

$$\begin{aligned} \alpha^{k+1}(i_0) &= \alpha(\alpha^k(i_0)) \\ &= \alpha(i_k) \\ &= i_{k+1}. \end{aligned}$$

By induction, the claim holds.

Next, we have $\alpha^r(i_0) = \alpha(\alpha^{r-1}(i_0) = \alpha(i_{r-1}) = i_0$. For $0 \le k \le r-1$, we have

$$\begin{aligned} \alpha^{r}(i_{k}) &= \alpha^{r} \alpha^{k}(i_{0}) \\ &= \alpha^{r+k}(i_{0}) \\ &= \alpha^{k} \alpha^{r}(i_{0}) \\ &= \alpha^{k}(i_{0}) \\ &= i_{k}. \end{aligned}$$

Here, the 4th equality follows from $\alpha^{r}(i_{0}) = i_{0}$ shown above, and the last equality follows from our claim from the hint.

Lastly, if $i \neq i_k$ for all k, then by definition of the cycle notation, $\alpha(i) = i$, and so in particular $\alpha^r(i) = i$. It follows that $\alpha^r = (1)$.

For (ii), observe that if 0 < k < r, then $\alpha^k(i_0) = i_k \neq i_0$, so $\alpha^k \neq (1)$. The claim follows.

- B. D_6 has order 6. The identity has order 1, the two nontrivial rotations have order 3, and every reflection has order 2. Therefore there are no elements of order 6.
- C. The order of a is $\frac{n}{\gcd(a,n)}$. We first show that $\frac{n}{\gcd(a,n)}$ is a period. Let $d = \gcd(a, n)$; since $d \mid a$ and $d \mid n, \exists k, \ell \in \mathbb{Z}$ such that a = kd and $n = \ell d$. Then $\ell = \frac{n}{\gcd(a,n)}$. We have

$$\ell a = \ell k d$$

= k\ell d
= kn
= 0 (mod n).

Therefore ℓ is a period.

For the other direction, suppose m is a positive period, so $ma \equiv 0 \pmod{n}$. By the Euclidean algorithm, $\exists x, y \in \mathbb{Z}$ such that

ax + ny = d.

Multiplying through by m, we get

max + mny = md,

and since $ma \equiv 0 \pmod{n}$, we must have $md \equiv 0 \pmod{n}$. But this means that $n \mid md$. As m > 0, this means that $n \leq md$. But $n = \ell d$, so $\ell \leq m$. Thus ℓ is the smallest period, and hence is the order, as desired.