HW 4 Selected Solutions
 Prof. Shahed Sharif

2.22 Write $\alpha=\left(i_{0} i_{1} \ldots i_{r-1}\right)$ with the i_{k} distinct. According to the hint, we would like to show that $\alpha^{k}\left(i_{0}\right)=\mathfrak{i}_{k}$ for $0 \leq k \leq r-1$. We do this by induction. The base case of $k=0$ is clear. Suppose $\alpha^{k}\left(\mathfrak{i}_{0}\right)=\mathfrak{i}_{k}$ for some $0 \leq k \leq r-2$. Then

$$
\begin{aligned}
\alpha^{k+1}\left(i_{0}\right) & =\alpha\left(\alpha^{\mathrm{k}}\left(\mathfrak{i}_{0}\right)\right) \\
& =\alpha\left(\mathfrak{i}_{\mathrm{k}}\right) \\
& =\mathfrak{i}_{k+1} .
\end{aligned}
$$

By induction, the claim holds.
Next, we have $\alpha^{r}\left(i_{0}\right)=\alpha\left(\alpha^{r-1}\left(i_{0}\right)=\alpha\left(i_{r-1}\right)=i_{0}\right.$. For $0 \leq k \leq r-1$, we have

$$
\begin{aligned}
\alpha^{r}\left(i_{k}\right) & =\alpha^{\mathrm{r}} \alpha^{\mathrm{k}}\left(\mathfrak{i}_{0}\right) \\
& =\alpha^{r+k}\left(\mathfrak{i}_{0}\right) \\
& =\alpha^{\mathrm{k}} \alpha^{\mathrm{r}}\left(\mathfrak{i}_{0}\right) \\
& =\alpha^{\mathrm{k}}\left(\mathfrak{i}_{0}\right) \\
& =\mathfrak{i}_{\mathrm{k}}
\end{aligned}
$$

Here, the 4 th equality follows from $\alpha^{r}\left(\mathfrak{i}_{0}\right)=\mathfrak{i}_{0}$ shown above, and the last equality follows from our claim from the hint.
Lastly, if $\mathfrak{i} \neq i_{k}$ for all k, then by definition of the cycle notation, $\alpha(i)=\mathfrak{i}$, and so in particular $\alpha^{r}(i)=i$. It follows that $\alpha^{r}=(1)$.
For (ii), observe that if $0<k<r$, then $\alpha^{k}\left(i_{0}\right)=\mathfrak{i}_{k} \neq \mathfrak{i}_{0}$, so $\alpha^{k} \neq(1)$. The claim follows.
B. D_{6} has order 6 . The identity has order 1 , the two nontrivial rotations have order 3, and every reflection has order 2 . Therefore there are no elements of order 6 .
C. The order of a is $\frac{n}{\operatorname{gcd}(a, n)}$. We first show that $\frac{n}{\operatorname{gcd}(a, n)}$ is a period. Let $d=\operatorname{gcd}(a, n)$; since $d \mid a$ and $d \mid n, \exists k, \ell \in \mathbb{Z}$ such that $a=k d$ and $\mathrm{n}=\ell$ d.Then $\ell=\frac{\mathrm{n}}{\operatorname{gcd}(\mathrm{a}, \mathrm{n})}$. We have

$$
\begin{aligned}
\ell \mathrm{a} & =\ell \mathrm{kd} \\
& =\mathrm{k} \mathrm{\ell d} \\
& =\mathrm{kn} \\
& \equiv 0 \quad(\bmod n) .
\end{aligned}
$$

Therefore ℓ is a period.

For the other direction, suppose m is a positive period, so $m a \equiv 0(\bmod n)$. By the Euclidean algorithm, $\exists x, y \in \mathbb{Z}$ such that

$$
a x+n y=d
$$

Multiplying through by m, we get

$$
\max +\operatorname{mny}=m d
$$

and since $m a \equiv 0(\bmod n)$, we must have $m d \equiv 0(\bmod n)$. But this means that $n \mid m d$. As $m>0$, this means that $n \leq m d$. But $n=\ell d$, so $\ell \leq m$. Thus ℓ is the smallest period, and hence is the order, as desired.

