Math 470: Abstract Algebra Homework 4

Chapter 2 Solutions
Proposition 1 (Exercise 2.19). Suppose that o € Sq is given by
(1234567809
- \9 87 6 5 4 2 1

Then sgn(a) = 1 and o™t = a.
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Proof. We observe that

a = (19)(28)(37)(46)(5)

where the factorization above is complete and all cycles are disjoint.
Thus, the cycles commute. By Proposition 2.27,

a~t = (91)(82)(73)(64)(5).

Noting, also, that transpositions and 1-cycles are their own inverses,
we see that o™t = a.
Also, sgn(a) = (=1)%® = 1, by use of the formula from the defini-

tion. |

Proposition 2 (Exercise 2.20). Suppose that o € S, fizes some j,
where 1 < j < n. Define o/ € Sx by o'(i) = o(i) for all i # j
where X = {i € {1,....,n} : i # j}. Then sgn(c’) = sgn(o). (Note
that X has n — 1 elements, so, for permutations, it can be seen as
essentially having the same properties as Sy_1.)

Proof. By Theorems 2.24 and 2.26, ¢ has a unique complete factoriza-
tion up to the order of the factors. Say,

0= 01...0,.

Since o fixes j, one of oy,...,0, must be the l-cycle (j). WLOG,
choose o, = (j). Moreover, j does not appear in any of oy,...,0,_1.
We define the function

Z
O = 01...0p_1.



Note that ¢” : X — X. We observe that ¢”(i) = o/(i) for all i € X.
Thus, ¢” = ¢'. Hence, ¢/ and ¢” have the same parity with respect

to X. So, we have the following:

sgn(o”) = sgn(o”)
= (—1)( D=1

= (-1
= sgn(o).
|

Proposition 3 (Exercise 2.23). Show that an r-cycle is an even per-
mutation if and only if r is odd.

Proof. Let ¢ € S, be an r-cycle and let ¢ be the number of disjoint
cycles in a complete factorization of o. Observe that ¢t € {1,...,n}.

First we show that r = (n —t) + 1. Since ¢ is an r-cycle, o has
a complete factorization comprised of ¢ and any 1-cycles of elements
fixed by o. Since every element of {1, ..., n} must appear in one and only
one disjoint cycle in a complete factorization, the sum of the lengths of
each disjoint cycle must be n. We know that ¢ is the number of cycles
in the complete factorization, so ¢ — 1 is the number of 1-cycles (after
removing r), each of which has length 1. Thus,

n=r+(t—-1)

Then after solving for 7,

r=n—(t—1)=Mn-—1t)+1 (1)

So, our claim is proven.

We observe that r is odd if and only if (n — t) is even; and we can
also see that, n—t is even if and only if (—1)"~* = 1. Thus, we conclude
that the proposition holds.

|

Proposition 4 (Exercise 2.29). If n > 2, prove that the number of

even permutations in S, is %n!.

Proof. Using the counting principle, it can be seen that S, has n! many
permutations. This follows from the fact that each permutation is one
way of permuting the elements in a set with n elements.

We observe that, by the definition of the sgn function, every per-
mutation in .S, is either even or odd. Thus, if we can demonstrate that
there exists a bijection of the even permutations onto the odd permu-
tations then not only do the set of even permutations and the set of



odd permutations have the same cardinality, it also shows that each
has cardinality %n!.

We define Sy to be the set of even permutations in S,, and Sy to
be the set of odd permutations in S,,. Take any transposition 7 € .S,,.
We claim that F' : S¢ — S defined by the rule F'(o) = o7 is such a
bijection.

First, fix 0 € S¢. By Lemma 2.38, F(0) € S°. This shows that I’
is well defined.

Second, we show that F' is bijective by showing that F' has an
inverse. Since every permutation {1,...,n} — {1,...,n} is naturally
a bijection, then every permutation has an inverse. In particular, 7 has
an inverse, say 7 '. Define G : S° — S¢ by the rule G(0) = o7~ !. We
see that G is also well defined by Lemma 2.38. Thus, we must only
show that G is a left and a right inverse of F.

Observe that

(FoG)(o)=F(G(o)) = Flot™') = (o7 7T =0.
Similarly,

(GoF)(0) =G(F(0)) = G(oT) = (o7)7 " = 0.

Thus, G = F~!. We conclude that F is the desired bijection and the
proposition holds. [ |

Solutions to Non-text Problem

Proposition 5 (Exercise A). Let 0 = o1 --- 0y be a product decompo-
sition of o into disjoint cycles. Suppose o; is a k; cycle, and

k= lem(ky, ..., k).
Then k is the smallest positive integer for which oy = (1).

Proof. We observe that disjoint cycles commute. Thus,

Since k is the least common multiple of ki, ..., k;, it follows that for
each k; there exists some m; such that k;m; = k where 1 < ¢ < k.
Then we have the following:

of = (o)™ - (o)™,

By exercise 2.22, 0¥ = (1) for each i. Thus, o* = (1), from what’s
above. Note that k£ # 0, because cycles have at least length 1. More-
over, k is, by definition, the smallest positive common multiple of k1, ..., k;.



So, there is no smaller multiple m satisfying ¢ = (1). For any integer

z between
1<z<k

, we see that there exists some k; for which z is not a multiple of
k;. Thus, of # (1). Thus, there is no such integer z. So, the result
holds. |



