
Math 470: Abstract Algebra Homework 4

Chapter 2 Solutions

Proposition 1 (Exercise 2.19). Suppose that α ∈ S9 is given by

α =

(
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)
Then sgn(α) = 1 and α−1 = α.

Proof. We observe that

α = (19)(28)(37)(46)(5)

where the factorization above is complete and all cycles are disjoint.
Thus, the cycles commute. By Proposition 2.27,

α−1 = (91)(82)(73)(64)(5).

Noting, also, that transpositions and 1-cycles are their own inverses,
we see that α−1 = α.

Also, sgn(α) = (−1)9−5 = 1, by use of the formula from the defini-
tion. ■

Proposition 2 (Exercise 2.20). Suppose that σ ∈ Sn fixes some j,
where 1 ≤ j ≤ n. Define σ′ ∈ SX by σ′(i) = σ(i) for all i ̸= j
where X = {i ∈ {1, ..., n} : i ̸= j}. Then sgn(σ′) = sgn(σ). (Note
that X has n − 1 elements, so, for permutations, it can be seen as
essentially having the same properties as Sn−1.)

Proof. By Theorems 2.24 and 2.26, σ has a unique complete factoriza-
tion up to the order of the factors. Say,

σ = σ1...σr.

Since σ fixes j, one of σ1, ..., σr must be the 1-cycle (j). WLOG,
choose σr = (j). Moreover, j does not appear in any of σ1, ..., σr−1.
We define the function

σ′′ := σ1...σr−1.
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Note that σ′′ : X → X. We observe that σ′′(i) = σ′(i) for all i ∈ X.
Thus, σ′′ = σ′. Hence, σ′ and σ′′ have the same parity with respect
to X. So, we have the following:

sgn(σ′) = sgn(σ′′)

= (−1)(n−1)−(r−1)

= (−1)n−r

= sgn(σ).

■

Proposition 3 (Exercise 2.23). Show that an r-cycle is an even per-
mutation if and only if r is odd.

Proof. Let σ ∈ Sn be an r-cycle and let t be the number of disjoint
cycles in a complete factorization of σ. Observe that t ∈ {1, ..., n}.

First we show that r = (n − t) + 1. Since σ is an r-cycle, σ has
a complete factorization comprised of σ and any 1-cycles of elements
fixed by σ. Since every element of {1, ..., n}must appear in one and only
one disjoint cycle in a complete factorization, the sum of the lengths of
each disjoint cycle must be n. We know that t is the number of cycles
in the complete factorization, so t − 1 is the number of 1-cycles (after
removing r), each of which has length 1. Thus,

n = r + (t− 1)

Then after solving for r,

r = n− (t− 1) = (n− t) + 1. (1)

So, our claim is proven.
We observe that r is odd if and only if (n− t) is even; and we can

also see that, n−t is even if and only if (−1)n−t = 1. Thus, we conclude
that the proposition holds.

■

Proposition 4 (Exercise 2.29). If n ≥ 2, prove that the number of
even permutations in Sn is 1

2
n!.

Proof. Using the counting principle, it can be seen that Sn has n! many
permutations. This follows from the fact that each permutation is one
way of permuting the elements in a set with n elements.

We observe that, by the definition of the sgn function, every per-
mutation in Sn is either even or odd. Thus, if we can demonstrate that
there exists a bijection of the even permutations onto the odd permu-
tations then not only do the set of even permutations and the set of



odd permutations have the same cardinality, it also shows that each
has cardinality 1

2
n!.

We define Se
n to be the set of even permutations in Sn and So

n to
be the set of odd permutations in Sn. Take any transposition τ ∈ Sn.
We claim that F : Se

n → So
n defined by the rule F (σ) = στ is such a

bijection.
First, fix σ ∈ Se

n. By Lemma 2.38, F (σ) ∈ So
n. This shows that F

is well defined.
Second, we show that F is bijective by showing that F has an

inverse. Since every permutation {1, ..., n} → {1, ..., n} is naturally
a bijection, then every permutation has an inverse. In particular, τ has
an inverse, say τ−1. Define G : So

n → Se
n by the rule G(σ) = στ−1. We

see that G is also well defined by Lemma 2.38. Thus, we must only
show that G is a left and a right inverse of F .

Observe that

(F ◦G)(σ) = F (G(σ)) = F (στ−1) = (στ−1)τ = σ.

Similarly,

(G ◦ F )(σ) = G(F (σ)) = G(στ) = (στ)τ−1 = σ.

Thus, G = F−1. We conclude that F is the desired bijection and the
proposition holds. ■

Solutions to Non-text Problem

Proposition 5 (Exercise A). Let σ = σ1 · · ·σt be a product decompo-
sition of σ into disjoint cycles. Suppose σi is a ki cycle, and

k = lcm(k1, ..., kt).

Then k is the smallest positive integer for which σk = (1).

Proof. We observe that disjoint cycles commute. Thus,

σk = (σ1 · · ·σt)
k = σk

1 · · ·σk
t .

Since k is the least common multiple of k1, ..., kt, it follows that for
each ki there exists some mi such that kimi = k where 1 ≤ i ≤ k.
Then we have the following:

σk = (σk1
1 )m1 · · · (σkt

t )mt .

By exercise 2.22, σki
i = (1) for each i. Thus, σk = (1), from what’s

above. Note that k ̸= 0, because cycles have at least length 1. More-
over, k is, by definition, the smallest positive common multiple of k1, ..., kt.



So, there is no smaller multiple m satisfying σm = (1). For any integer
z between

1 ≤ z ≤ k

, we see that there exists some ki for which z is not a multiple of
ki. Thus, σz

i ̸= (1). Thus, there is no such integer z. So, the result
holds. ■


