HW 3 Selected Solutions
 Prof. Shahed Sharif

2.26 Let me prove the following claim first:

Claim. Suppose $\beta=\left(a_{0} a_{1} \cdots a_{n-1}\right)$. Suppose $n=r t$ for positive integers r, t. Then

$$
\begin{equation*}
\beta^{t}=\left(a_{0} a_{t} \ldots a_{n-t}\right)\left(a_{1} a_{t+1} \ldots a_{n-t+1}\right) \cdots\left(a_{r-1} \ldots a_{n-1}\right) \tag{1}
\end{equation*}
$$

In particular, β^{t} is a product of t disjoint r -cycles.
Proof. Since $\mathrm{n}=\mathrm{rt}$, one sees that each factor is an r -cycle. The fact that there are t disjoint cycles follows easily. So we just have to show that the equality holds.
From the hint in 2.22, we have that $\beta^{k}\left(a_{0}\right)=a_{k}$ for $0 \leq k \leq n-1$. In particular, $\beta^{\mathrm{t}}\left(\mathrm{a}_{0}\right)=\mathrm{a}_{\mathrm{t}}$. But then $0 \leq \mathfrak{i} \leq \mathrm{n}-\mathrm{t}-1$, we have

$$
\beta^{t}\left(a_{i}\right)=\beta^{t} \beta^{i}\left(a_{0}\right)=\beta^{t+i}\left(a_{0}\right)=a_{t+i}
$$

Now let $\mathrm{n}-\mathrm{t} \leq \mathrm{i} \leq \mathrm{n}-1$. Write $\mathrm{i}=\mathrm{n}-\mathrm{t}+\mathrm{k}$, with $0 \leq \mathrm{k} \leq \mathrm{t}-1$. We have

$$
\beta^{t}\left(a_{i}\right)=\beta^{t+i}\left(a_{0}\right)=\beta^{n+k}\left(a_{0}\right)=\beta^{k} \beta^{n}\left(a_{0}\right)=\beta^{k}\left(a_{0}\right)=a_{k}
$$

But this exactly agrees with the product of r -cycles given above.
Now we prove the claims.
Suppose α is regular; say $\alpha=\sigma_{0} \cdots \sigma_{t-1}$, where the σ_{i} are disjoint cycles of length r. Write

$$
\sigma_{i}=\left(b_{i 0} b_{i 1} \ldots b_{i, r-1}\right)
$$

for each i. I want the product of the σ_{i} to look like the product of cycles in the claim. To do this, for $k=i t+j, 0 \leq i \leq t-1,0 \leq j \leq r-1$, define $a_{k}=b_{i j}$. I leave it as an exercise to show that we get the right side of (1). Then with β as in the claim, we get $\beta^{t}=\alpha$.
The reverse direction follows from (ii). For (ii), let $d=\operatorname{gcd}(r, k)$ and write $k=d \ell$. We have $\alpha^{k}=\left(\alpha^{d}\right)^{\ell}$. From the Claim, α^{d} is a product of $d r / d$ cycles. Observe that $\operatorname{gcd}(\ell, r / d)=1$, so it suffices to show that if σ is an s-cycle $(s=r / d)$ and $\operatorname{gcd}(\ell, s)=1$, then σ^{ℓ} is also an s-cycle. I leave this as an exercise.

Part (iii) results immediately from (ii): if α is a p-cycle and p is prime, then for $k \in \mathbb{Z}, \operatorname{gcd}(k, p)=1$ or p. Now apply (ii) to each case.
For (iv): we enumerate by cycle type. I will do S_{5}. We can have the identity, a 2 -cycle, two 2 -cycles, a 3 -cycle, a 4 -cycle, or a 5-cycle. There are

- one identity
- $\binom{5}{2}$ 2-cycles,
- $\binom{5}{2} \cdot\binom{3}{2} / 2$! products of two cycles (choose the first two cycle, then from the remaining 3 elements choose the second 2 cycle, then divide by 2 since this could have been done in the opposite order),
- 5.4•3/3 3-cycles,
- $5 \cdot 4 \cdot 3 \cdot 2 / 4$ 4-cycles, and
- $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 / 55$-cycles.

Adding these up, we get a total of 100 regular elements.
2.27 I first show by induction on k that $\alpha \beta^{k}=\beta^{k} \alpha$. The $k=1$ case is by hypothesis. Suppose for some $k, \alpha \beta^{k}=\beta^{k} \alpha$. Then

$$
\begin{aligned}
\alpha \beta^{k+1} & =\left(\alpha \beta^{k}\right) \beta \\
& =\left(\beta^{k} \alpha\right) \beta \\
& =\beta^{k}(\alpha \beta) \\
& =\beta^{k}(\beta \alpha) \\
& =\beta^{k+1} \alpha .
\end{aligned}
$$

The claim follows by induction.
Now we show that $(\alpha \beta)^{k}=\alpha^{k} \beta^{k}$ by induction on k. The $k=1$ case is clear. Assume the equality holds for some k. Then

$$
\begin{aligned}
(\alpha \beta)^{k+1} & =(\alpha \beta)^{k} \alpha \beta \\
& =\left(\alpha^{k} \beta^{k}\right) \alpha \beta \\
& =\alpha^{k}\left(\beta^{k} \alpha\right) \beta \\
& =\alpha^{k}\left(\alpha \beta^{k}\right) \beta \\
& =\alpha^{k+1} \beta^{k+1} .
\end{aligned}
$$

By induction, the claim holds.
The second one we did in class: $\alpha=(12), \beta=(23)$. Then $\alpha^{2} \beta^{2}=(1)$, while $(\alpha \beta)^{2}=(321)$.
2.28 For (i), suppose α moves i, so $\alpha(i)=\mathfrak{j} \neq \mathfrak{i}$. Then $\alpha^{-1}(\mathfrak{j})=\mathfrak{i}$. If we have $\alpha^{-1}(i)=i$, then since $i \neq j$, this would contradict the fact that α^{-1} is injective. Therefore $\alpha^{-1}(i) \neq i$, from which the claim follows. For the converse, reverse the roles of α and α^{-1}.
For (ii), we have $\beta=\alpha^{-1}$. Given $i \in\{1,2, \ldots, n\}$, if α moves i, then by part (i), β also moves i. But α and β are disjoint, so cannot both move i. Therefore α does not move i. In other words, $\alpha(i)=i$. This holds $\forall i$, and hence α is the identity function. Since $\beta=\alpha^{-1}$, we have $\beta=(1)$ as well.

2 of 3

2.31 Suppose $\alpha(\mathfrak{i})=\mathfrak{j}$. Since $n \geq 3$, there is some $k \neq \mathfrak{i}, \mathfrak{j}$. Let $\beta=(\mathfrak{j k})$. By hypothesis, $\alpha \beta=\beta \alpha$. In particular,

$$
\begin{aligned}
(\beta \alpha)(i) & =\beta(\alpha(i)) \\
& =\beta(\mathfrak{j}) \\
& =k .
\end{aligned}
$$

Therefore $(\alpha \beta)(i)=k$. If $i \neq j$, then since also $i \neq k$, we have $\beta(i)=i$. This implies that $(\alpha \beta)(i)=\alpha(i)=j$, contradicting $j \neq k$. Therefore $i=j$, so i is a fixed point for α. Since i was arbitrary, α fixes everything, and hence is the identity.

