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2.26 Let me prove the following claim first:

Claim. Suppose β = (a0 a1 · · · an−1). Suppose n = rt for positive integers r, t.
Then

βt = (a0 at . . . an−t)(a1 at+1 . . . an−t+1) · · · (ar−1 . . . an−1). (1)

In particular, βt is a product of t disjoint r-cycles.

Proof. Since n = rt, one sees that each factor is an r-cycle. The fact that there
are t disjoint cycles follows easily. So we just have to show that the equality
holds.

From the hint in 2.22, we have that βk(a0) = ak for 0 ≤ k ≤ n − 1. In
particular, βt(a0) = at. But then 0 ≤ i ≤ n− t− 1, we have

βt(ai) = βtβi(a0) = βt+i(a0) = at+i.

Now let n− t ≤ i ≤ n− 1. Write i = n− t+ k, with 0 ≤ k ≤ t− 1. We have

βt(ai) = βt+i(a0) = βn+k(a0) = βkβn(a0) = βk(a0) = ak.

But this exactly agrees with the product of r-cycles given above.

Now we prove the claims.

Suppose α is regular; say α = σ0 · · ·σt−1, where the σi are disjoint cycles
of length r. Write

σi = (bi0 bi1 . . . bi,r−1)

for each i. I want the product of the σi to look like the product of cycles in
the claim. To do this, for k = it+ j, 0 ≤ i ≤ t− 1, 0 ≤ j ≤ r− 1, define
ak = bij. I leave it as an exercise to show that we get the right side of (1).
Then with β as in the claim, we get βt = α.

The reverse direction follows from (ii). For (ii), let d = gcd(r,k) and write
k = dℓ. We have αk = (αd)ℓ. From the Claim, αd is a product of d r/d-
cycles. Observe that gcd(ℓ, r/d) = 1, so it suffices to show that if σ is an
s-cycle (s = r/d) and gcd(ℓ, s) = 1, then σℓ is also an s-cycle. I leave this as
an exercise.

Part (iii) results immediately from (ii): if α is a p-cycle and p is prime, then
for k ∈ Z, gcd(k,p) = 1 or p. Now apply (ii) to each case.

For (iv): we enumerate by cycle type. I will do S5. We can have the identity,
a 2-cycle, two 2-cycles, a 3-cycle, a 4-cycle, or a 5-cycle. There are

• one identity
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•
(
5
2

)
2-cycles,

•
(
5
2

)
·
(
3
2

)
/2! products of two cycles (choose the first two cycle, then from

the remaining 3 elements choose the second 2 cycle, then divide by 2
since this could have been done in the opposite order),

• 5 · 4 · 3/3 3-cycles,

• 5 · 4 · 3 · 2/4 4-cycles, and

• 5 · 4 · 3 · 2 · 1/5 5-cycles.

Adding these up, we get a total of 100 regular elements.

2.27 I first show by induction on k that αβk = βkα. The k = 1 case is by
hypothesis. Suppose for some k, αβk = βkα. Then

αβk+1 = (αβk)β

= (βkα)β

= βk(αβ)

= βk(βα)

= βk+1α.

The claim follows by induction.

Now we show that (αβ)k = αkβk by induction on k. The k = 1 case is clear.
Assume the equality holds for some k. Then

(αβ)k+1 = (αβ)kαβ

= (αkβk)αβ

= αk(βkα)β

= αk(αβk)β

= αk+1βk+1.

By induction, the claim holds.

The second one we did in class: α = (1 2),β = (2 3). Then α2β2 = (1), while
(αβ)2 = (3 2 1).

2.28 For (i), suppose α moves i, so α(i) = j ̸= i. Then α−1(j) = i. If we have
α−1(i) = i, then since i ̸= j, this would contradict the fact that α−1 is
injective. Therefore α−1(i) ̸= i, from which the claim follows. For the
converse, reverse the roles of α and α−1.

For (ii), we have β = α−1. Given i ∈ {1, 2, . . . ,n}, if α moves i, then by
part (i), β also moves i. But α and β are disjoint, so cannot both move i.
Therefore α does not move i. In other words, α(i) = i. This holds ∀i, and
hence α is the identity function. Since β = α−1, we have β = (1) as well.
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2.31 Suppose α(i) = j. Since n ≥ 3, there is some k ̸= i, j. Let β = (j k). By
hypothesis, αβ = βα. In particular,

(βα)(i) = β(α(i))

= β(j)

= k.

Therefore (αβ)(i) = k. If i ̸= j, then since also i ̸= k, we have β(i) = i. This
implies that (αβ)(i) = α(i) = j, contradicting j ̸= k. Therefore i = j, so i is a
fixed point for α. Since i was arbitrary, α fixes everything, and hence is the
identity.
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