
Math 470 Spring 2025

HW 3
Due: Tuesday, February 18

Do exercises 2/22, 24, 26ii and iii, 27, 28, 30, 31, and the following:

A. Let σ = (4 5 2 1)(3 6 7) and τ = (1 3 4)(2 5). Compute στ and τσ.

B. With notation as above, compute στσ−1.

C. Find α ∈ S7 for which
ατα−1 = (1 2 3)(4 5).

D. Find the smallest positive k such that σk = (1).
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Change

Chapter 2 Solutions

Proposition 1 (Exercise 2.22). Let α ∈ Sn be a permutation.

(i) If α is an r-cycle then αr = (1).

(ii) Additionally, r is the smallest positive integer such that αk = (1).

Proof. (i) Let i0, i1, ... (where this list is infinite) be integers in {1, ..., n} such that
ij+1 = α(ij) for each j ∈ N, where i0, ..., ir−1 are distinct and we define ip = iq if
p ≡ q mod r.

We claim that
αk(ij) = ij+k (1)

for all k, j ∈ N.
Then we proceed with a proof by induction on k.
Fix j ∈ N. Let k = 1. Then

αk(ij) = α1(ij) = ij+1,

by choice of α.
Now suppose that k > 1. We assume that,

αt(ij) = ij+t.

for all t satisfying 1 ≤ t < k. By choice of α and the induction hypothesis we have
the following:

αk(ij) = α(αk−1(ij))

= α(ij+k−1)

= ij+k.

Therefore, by induction our claim holds for all k ∈ Z+. This result then holds for all
j ∈ Z+, because j was chosen to be arbitrary. We observe that α then operates as
addition on the indices of {i0, ..., ir−1}.

Suppose that ij ∈ {i0, ..., ir−1}. We note that α is an r-cycle. By our choice of
indices,

αr(ij) = ij+r = ij.

Since j was chosen to be arbitrary, it follows that αr = (1).
(ii) Assume that α is as in part (i). For r = 1, r is then the smallest positive

integer. Thus, the claim must hold. Assume that r > 1. Let k be some other integer
such that αk = (1). For the sake of contradiction, assume that k < r. Thus, for any



j ∈ Z+, αk(i1) = i1+k, by our claim. So, i1+k = i1 by hypothesis. We observe that
1 ≤ k+1 ≤ r by choice of k. Thus, we have that i1, ..., ik+1, ..., ir are not all distinct.
But this contradicts our choice of i1, ..., ir. So, no such k must exist. Therefore, r is
the smallest positive integer satisfying αr = (1). ■

Proposition 2 (Exercise 2.24). Given X = {1, 2, ..., n}, let us call a permutation τ
of X an adjacency if it is a transposition of the form

(i i+ 1)

for i < n. Let τ = (ij). If i < j, then τ is a product of an odd number of adjacencies.

Proof. Fix i, j ∈ X. Since τ is a 2-cycle, it follows that τ has n − 1 factors in its
complete factorization. We observe that

sgn(τ) = (−1)n−(n−1) = (−1)1 = −1.

Hence, τ is odd. By Theorem 2.40, τ is a product of an odd number of transpositions.
Similarly, any adjacency is a transposition, so if τ is a product of adjacencies then
τ must be a product of an odd number of adjacencies by Theorem 2.40. Hence, it
suffices to show that τ is a product of adjacencies.

Let k = j − i. We wish to show that when k ≥ 2, the following equality holds:

(i j) =

j−1∏
n=i

(n n+ 1)
i+1∏

n=j−1

(n− 1 n).

We note that when k = 1, then τ is trivially a product of adjacencies.
Let k = 2. Then

(i j) = (i+ 1 i)(i+ 1 j)(i i+ 1) (2)

This can be seen by directly plugging in the values i, i+1, j into the right hand side.
From which we get the following strings of outputs:

i 7→ i+ 1 7→ j 7→ j,

i+ 1 7→ i 7→ i 7→ i+ 1,

and

j 7→ j 7→ i+ 1 7→ i.

Since (i j) and the RHS of equation 2 fix every element that is not one of i, i+1, j
we see that the equality holds.

Let k > 2. Then we assume

(r s) =
s−1∏
n=r

(n n+ 1)
r+1∏

n=s−1

(n− 1 n). (3)



for all integers r, s ∈ X such that r < s and s− r ≤ k − 1. Note that transpositions
are their own inverses, so (r s) = (s r).

We claim that

(i j) = (j − 1 i)(j − 1 j)(i j − 1)

=

( j−2∏
n=i

(n n+ 1)
i+1∏

n=j−2

(n− 1 n)

)
(j − 1 j)

( j−2∏
n=i

(n n+ 1)
i+1∏

n=j−2

(n− 1 n)

)

=

( j−1∏
n=i

(n n+ 1)
i+1∏

n=j−2

(n− 1 n)

)( j−2∏
n=i

(n n+ 1)
i+1∏

n=j−2

(n− 1 n)

)

=

( j−1∏
n=i

(n n+ 1)
i+1∏

n=j−2

(n− 1 n)

)( j−3∏
n=i

(n n+ 1)
i+1∏

n=j−1

(n− 1 n)

)

=

( j−1∏
n=i

(n n+ 1)

)( i+1∏
n=j−2

(n− 1 n)

j−3∏
n=i

(n n+ 1)

)( i+1∏
n=j−1

(n− 1 n)

)

=

( j−1∏
n=i

(n n+ 1)

)(
1

)( i+1∏
n=j−1

(n− 1 n)

)

=

( j−1∏
n=i

(n n+ 1)
i+1∏

n=j−1

(n− 1 n)

)
.

It’s clear the first equality holds by an argument similar to the argument in the k = 2
case. The second equality holds by the induction hypothesis. The third equality holds
since disjoint cycles commute. The fourth equality holds because of the associativity
of function composition. The fifth equality holds, also, by associativity of function
composition. The sixth equality holds because each transposition is its own inverse.
The seventh equality holds again by the associativity of function composition.

Thus, our claim holds by induction. Moreover, (i j) is then a product of adja-
cencies and we conclude that the proposition holds. ■

Proposition 3 (Exercise 2.26 ii,iii). Let α ∈ Sn.

(i) Prove that if α is an r-cycle, then αk is a product of gcd(r, k) disjoint cycles,
each of length r/gcd(r,k).

(ii) If p is a prime, prove that every power of a p-cycle is either a p-cycle or (1).

Proof. (i) Since α is an r-cycle, α moves r elements in 1, ..., n. We label the elements
moved by α as i0, ..., ir−1. Moreover, define α(ij) = ij+1 and say that ip = iq if
p ≡ q mod r for all j, p, q ∈ N. By our claim above, (1), in the proof of Proposition
1, we see that αb(ij) = ij+b for any b ∈ N.

Fix ij ∈ {i0, ..., ir−1}. Set d = gcd(r, k) and m = lcm(r, k). We observe that r|m.
Then



(αk)
r
d (ij) = ij+ rk

d
= ij+m = ij.

by choice of α. We also give αk the following complete factorization of disjoint cycles:

αk = β1, ..., βt.

We discard any 1-cycles in this factorization and relabel such that t counts the number
of a-cycles in this factorization with a > 1. Say that each cycle has length ri with
1 ≤ i ≤ t. It still holds that t < n. If anything t is now smaller. Then there exists
some disjoint cycle in the factorization of αk, say βb, such that αk(ij) = βb(ij). Thus,

(αk(ij))
r
d = β

r
d
b (ij) = ij. Observe that for any other element ij′ that is moved by βb we

could argue, using a similar argument to that above, to say that β
r
d
b (ij′) = ij′ . Since

βb fixes every other element in {1, ..., n}, β
r
d
b = (1). We observe that the factorization

of αk was chosen such that each cycle moves at least 2 elements in {i0, ..., ir−1}. Thus,
this argument holds for all cycles in the complete factorization of αk. By exercise 2.22
we know that the cycle length of any cycle in the factorization is the smallest power
making that cycle (1). So, r

d
is at most the length of each cycle. Thus, there are

at least d cycles. More precisely, t ≤ d. Suppose that some cycle has length ℓ ≤ r
d
.

Since each cycle is disjoint, we observe that the sum of the lengths of the cycles must
be r. In particular, say βt has length ℓ. Thus,

r = (t− 1)
r

d
+ ℓ ≤ t

r

d
≤ d

r

d
≤ r.

So, it follows that these inequalities only hold when equality holds. Thus, t = d.
Since t = d, and the lengths of the cycles sum to r, it follows that each cycle must
have length r

d
.

(ii) Suppose that α is a p-cycle for some prime p. From part (i), we observe that
αk = β1 · · · βd where d = gcd(p, k) for any k ∈ Z+. But d = 1, because p is prime. If
k is a multiple of p then αk = (1) by Exercise 2.22. If k is not a multiple of p, αk = β1

is a p-cycle with length p
d
= p.

■

Proposition 4 (Exercise 2.27). Let α, β ∈ Sn.

(i) Suppose that α and β commute. Then (αβ)k = αkβk for all k ≥ 1.

(ii) There exists an example of α and β such that (αβ)k ̸= αkβk.

Proof. (i) We proceed by induction on k. For k = 1, it follows immediately by
hypothesis.

Suppose that k > 1. Then assume that, (αβ)t = αtβt for each t such that
1 ≤ t < k.



(αβ)k = (αβ)k−1(αβ)

= αk−1βk−1αβ

= αk−1αβk−1β

= αkβk.

The equality above holds because α commutes with β and so it commutes with every
copy of β in βk−1. Thus, the conclusion holds for all k ∈ Z+.

(ii) Choose α = (1234) and β = (1324) from S4.

(αβ)2 = ((1234)(1324))2 = ((142)(3))2 = (142)(142) = (124)

Also,

α2 = (1234)(1234) = (13)(24)

and
β2 = (1324)(1324) = (12)(34).

α2β2 = (13)(24)(12)(34) = (14)(23).

Thus, (αβ)2 ̸= α2β2. ■

Proposition 5 (Exercise 2.28). Suppose that α is a permutation in Sn. Then α
moves i ∈ {1, ..., n} if and only if α−1 moves i.

Proof. Suppose that α has the following complete factorization into disjoint cycles:

α = β1 · · · βt.

By Proposition 2.27,

α−1 = β−1
1 · · · β−1

t .

Choose some i that is moved by α. Then i is moved by some cycle in the factor-
ization of α. WLOG, say β. Suppose that β is an r-cycle. We then give the symbols
moved by β an index. In particular, we say that i = i0, ij+1 = β(ij) and ip = iq
if p ≡ q mod r for all p, q, j ∈ N. Then we observe that

βr = ββr−1 = βr−1β = (1) (4)

by Exercise 2.22. Thus, βr−1 = β−1. From our claim (1) in the proof of Proposition 1,
we observe that β−1(i0) = ir−1. Since r − 1 ̸≡ 0 mod r, we have that ir−1 ̸= i0. From
which it follows that β−1 moves i. Moreover, we see that α−1(i) = β−1(i), by (4) and
the fact that the cycles in the factorization of α−1 are disjoint. Thus, α−1 moves i.
Since i was chosen to be arbitrary, this argument will hold for any i that is moved by
α. ■



Proposition 6 (Exercise 2.30). There exists α, β, γ ∈ S5, none of which is the iden-
tity,

αβ = βα, and αγ = γα

but

βγ ̸= γβ.

Proof. Say that γ = (12345) and β = (123). Then

γβ = (13245)

βγ = (13452)

Choose α = (12).

αβ = (12)(12345) = (1)(2345) =

■

Proposition 7 (Exercise 2.31). Let n ≥ 3. Supose that α ∈ Sn. Then α commutes
with every permutation in Sn if and only if α = (1).

Proof. The reverse direction is obvious, because (1) is the identity function. So, it
suffices to show the forward direction. Then we wish to show that α fixes every i in
{1, ..., n}. In other words, we wish to show that α does not move any i in {1, ..., n}.

Assume for the sake of contradiction that αmoves some symbol in the set {1, ..., n}.
In particular, say that α moves i. This implies there is some symbol, say j, such that
α sends i 7→ j, and i and j are distinct. Since n ≥ 3 there exists some symbol k in
{1, ..., n} where each of i, j and k are distinct. Choose β ∈ Sn to be β = (jk). Then,

(βα)(i) = β(j) = k

and

(αβ)(i) = α(i) = j.

But this contradicts the choice of α. Since we chose i to be arbitrary, α must not
move any symbol in {1, ..., n}. It follows that α fixes every symbol. Thus, α = (1).

■

Non-text Solutions

Proposition 8 (Exercise A). Let σ = (4521)(367) and τ = (134)(25). Compute στ
and τσ.



Proof. Then

στ = (16735)(25)(4) = (16735)(25).

and

τσ = (1)(23674)(5) = (23674).

■

Proposition 9 (Exercise B). Leaving σ and τ as defined in Exercise A compute
στσ−1.

Proof.

στσ−1 = (4521)(367)(134)(25)(1254)(763) = (12)(3)(465)(7) = (12)(456).

■

Proposition 10 (Exercise C). Find α ∈ S7 for which

ατα−1 = (123)(45).

Proof. By Proposition 2.32, we see that we need some α ∈ Sn such that

α(1) = 1

α(3) = 2

α(4) = 3

α(2) = 4

α(5) = 5.

Thus, α = (1)(324)(5) = (324). As a check:

ατα−1 = (324)(134)(25)(423) = (123)(45).

■

Proposition 11 (Exercise D). Find the smallest positive k such that σk = (1).

Proof. By the exercise 2.22, (367)3 = (1) and (4521)4 = (1). It follows that this
occurs are every multiple of 3 and 4, respectively. Thus, σk = (1) when k is a
common multiple of both 3 and 4. Then the smallest integer such that this occurs is
the lcm(3, 4) = 12. Hence, k = 12. ■


