HW 2 Selected Solutions
 Prof. Shahed Sharif

1.73 We use the fact that $10 \equiv-1(\bmod 11)$, so $10^{n} \equiv(-1)^{n}(\bmod 11)$. Let n have base 10 expansion $d_{r} d_{r-1} \ldots d_{0}$. This means that

$$
n=d_{0}+10 d_{1}+10^{2} d_{2}+\cdots+10^{r} d_{r}=\sum_{i=0}^{r} 10^{i} d_{i}
$$

Taking the whole expression mod 11 , and using $10^{n} \equiv(-1)^{n}(\bmod 11)$, we obtain

$$
n \equiv d_{0}-d_{1}+d_{2}-\cdots+(-1)^{r} d_{r}=\sum_{i=0}^{r}(-1)^{i} d_{i}
$$

as required.
2.13 For the first, suppose $(g \circ f)(x)=(g \circ f)(y)$. Then $g(f(x))=g(f(y))$, and since g is injective, $f(x)=f(y)$. But f is injective, so $x=y$. Therefore $g \circ f$ is injective.
For the second, let $z \in Z$. Since g is surjective, $\exists y \in Y$ such that $g(y)=z$. Since f is surjective, $\exists x \in X$ such that $f(x)=y$. In particular, $(g \circ f)(x)=z$. Therefore $g \circ f$ is surjective.
The third is obtained just by combining the first two parts.
For the fourth part, let $z \in Z$. Since $g \circ f$ is surjective, $\exists x \in X$ such that $(g \circ f)(x)=z$. In particular, $g(f(x))=z$, showing g is surjective. Now suppose $f(x)=f(y)$. Then $(g(f(x)))=g(f(y))$, or $(g \circ f)(x)=(g \circ f)(y)$. Since $g \circ f$ is injective, $x=y$. It follows that f is injective.
A. Let f be such a function. For $f(1)$, there are 4 possibilities; for $f(2)$, there are 4 ; etc. By the multiplication principle, there are 4^{4} functions.

