
Math 470: Abstract Algebra Homework 2

Chapter 1 Solutions

Proposition 1 (Exercise 1.65). Suppose that a and b are each positive
integers satisfying gcd(a, b) = 1. If the product ab is square then each
a and b are also squares.

Proof. Suppose that ab ≤ 2. So, ab = 1 or ab = 2. We observe that 2
is not a perfect square. So, ab ̸= 2 by hypothesis. If ab = 1 then we see
that both a = 1 and b = 1. Thus, a = 12 and b = 12.

Now suppose that ab > 2. Then there exists some positive integer,
say c, satisfying ab = c2, because ab is square. Note that c ≥ 2, else
we have ab = 1 < 2. By theorem 1.2, we can express c as a product of
primes, say c = p1 · ... · pk. Thus,

ab = (p1 · ... · pk)2 = (p1 · ... · pk)(p1 · ... · pk).
Using the associativity and commutativity of the integers, we can gather
factors with like indices and produce the following expression for ab:

ab = p21 · ... · p2k.
We observe that if a < 2 or b < 2 then a = 1 or b = 1. Then b = ab

or a = ab. But in either case, 1 = 12 and ab is assumed to be square
by hypothesis, so we are done. Thus, we assume that a ≥ 2 and b ≥ 2.
By the fundamental theorem of arithmetic, we know that a and b each
have a prime factorization and each p1, ..., pk is a prime factor of a or b.
Because a and b are relatively prime, each prime p1, ..., pk is exclusively
a factor of a or b. It follows that each of p21, ..., p

2
k exclusively belongs

to the prime factorization of a or b. Since the index assignment is
arbitrary, we may re-index if necessary. Then there exists some positive
integer r satisfying 1 ≤ r ≤ k for which

a = p21 · ... · p2r and b = p2r+1 · ... · p2k.
After rearranging the factors we see that:

a = (p1 · ... · pr)2 and b = (pr+1 · ... · pk)2.
■
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Proposition 2 (Exercise 1.69). Suppose that M is some non-negative
integer. Then M is the lcm of a1, ..., an if and only if M is a common
multiple that divides every other common multiple.

Proof. Let N be a common multiple of a1, ..., an, throughout.
(⇐) Since M |N , M ≤ N . Since N is arbitrary, M is the smallest

common multiple. Hence, M is the least common multiple.
(⇒) Let M = 0. Then at least one of a1, ..., an is 0 by the definition

of the least common multiple. Thus, 0|N by choice of N . So, N = 0,
because the only number that divides 0 is 0. It follows that M |N .

Suppose that M ̸= 0. By the division algorithm,

N = qM + r

for unique integers q and r such that 0 ≤ r < M . Since a1|M and a1|N ,
it follows that a1|(N − qM). So, a1|r. By a similar argument, each
of a1, ..., an divides r. Hence, r is a common multiple. But M is the
least positive common multiple, which implies that r = 0, since r < M .
Then N = qM . Thus, M |N . Since N is arbitrary, M divides all
common multiples.

■

Proposition 3 (Exercise 1.73). A positive integer n is divisible by 11
if and only if the alternating sum of its digits is divisible by 11.

Proof. We first claim the following:

10k ≡

{
1 mod 11, if k is even

−1 mod 11, if k is odd.

It is clear that 100 ≡ 1 mod 11 and 10 ≡ −1 mod 11. Similarly, we
see that 102 = 100 = (9)(11) + 1. Thus, 102 ≡ 1 mod 11. So, assume
that k > 2. If k is even then

10k = (102)
k
2 ≡ 1

k
2 mod 11 ≡ 1 mod 11.

Note that k
2
is an integer, since k is even.

If k is odd then k−1 is even. So, we can apply the the result above.
Thus, we have the following:

10k = (10k−1)101 ≡ (1)10 mod 11 ≡ 10 mod 11 ≡ −1 mod 11.

This proves our claim.
We now show that the proposition holds. Suppose that k is even.

By the claim above, the following holds:

dk10
k + ...+ d0 mod 11 ≡ dk − dk−1 + ...− d1 + d0 mod 11.



Similarly, when k is odd the congruence below is true.

dk10
k + ...+ d0 mod 11 ≡ −dk + dk−1 + ...− d1 + d0 mod 11

In either case, if one side is congruent to 0 mod 11 then the other
side is also congruent to 0 mod 11 by the transitivity of congruence
modulo 11. It follows that n is divisible by 11 if and only if the alter-
nating sum of the digits of n is congruent modulo 11.

■

Chapter 2 Solutions

Proposition 4 (Exercise 2.3i-iii). If A and B are subsets of a set X,
define their symmetric difference by

A+B = (A−B) ∪ (B − A)

Then the following hold:

(i) A+B = (A ∪B)− (A ∩B)

(ii) A+ A = ∅

(iii) A+ ∅ = A.

Proof. (i) Let x ∈ A+B. Then x ∈ (A−B)∪(B−A), by the definition
of A+B. So, x ∈ (A−B) or x ∈ (B−A), by the definition of a union.

Suppose that x ∈ (A−B). Then, x ∈ A and x ̸∈ B. It then follows
that x ∈ A ∪ B, by the definition of a union and x ̸∈ A ∩ B, by the
definition of an intersection. But this implies x ∈ (A∪B)− (A∩B), by
the definition of a set difference. The argument for when x ∈ (B−A) is
similar. Since x is an arbitrary element, this will hold for all x ∈ A+B.
Thus,

A+B ⊆ (A ∩B)− (A ∩B).

Let x ∈ (A ∪ B) − (A ∩ B), by the definition of a set difference.
Then x ∈ (A ∪ B) and x ̸∈ (A ∩ B). Since x ∈ A ∪ B, it follows
that x ∈ A or x ∈ B. However, because x ̸∈ A ∩ B this “or” is
exclusive.

So, if we assume that x ∈ A then x ̸∈ B. Following this line of
thought, we see that x ∈ (A − B). So, x ∈ (A − B) ∪ (B − A), by
the definition of a union. If we assume that x ∈ B then it follows
that x ∈ (A−B) ∪ (B − A) by similar reasoning. Thus,

A+B ⊇ (A ∩B)− (A ∩B).



Therefore, the claim of (i) holds, by the definition of set equality.
(ii) We observe that A − A = {x ∈ A|x ̸∈ A}, by the definition of a
set difference. Since x ∈ A or x ̸∈ A exclusively, there are no elements
in A− A. Thus, A− A = ∅. Then

A+ A = (A− A) ∪ (A− A) = ∅ ∪ ∅ = ∅.

(iii) Observe that A− ∅ = {x ∈ A|x ̸∈ ∅}. Since the empty set has
no elements at all, it shares no elements with A. Thus, x ∈ A − ∅ if
and only if x ∈ A. A− ∅ = A.

Also, (∅−A) = {x ∈ ∅|x ̸∈ A}. Since there are, by definition of the
emptyset, no elements x ∈ ∅, then there are no x ∈ ∅ such that x ∈ A.
It follows that (∅ − A) = ∅.

Using the definition of A + B and the definition of a union, we
conclude that

A+ ∅ = (A− ∅) ∪ (∅ − A) = A ∪ ∅ = A.

■

Proposition 5 (Exercise 2.13). Let f : X → Y and g : Y → Z be
functions.Then the following are true:

(i) If both f and g are injective, prove that g ◦ f is injective.

(ii) If both f and g are surjective, prove that g ◦ f is surjective.

(iii) If both f and g are bijective, prove that g ◦ f is bijective.

(iv) If g ◦ f is a bijection, then f is an injection and g is a surjection.

Proof. (i) Let x1, x2 ∈ X. Then observe that (g◦f)(x1), (g◦f)(x2) ∈ Z.
Suppose

(g ◦ f)(x1) = (g ◦ f)(x2).

Thus,

g(f(x1)) = g(f(x2)).

By the injectivity of g,

f(x1) = f(x2).

Then by the injectivity of f ,

x1 = x2.

So, (g ◦ f) is injective.



(ii) Let z ∈ Z. By the surjectivity of g, there exists some y ∈ Y
such that g(y) = z. By the surjectivity of f , there exists some x ∈ X
such that f(x) = y. Hence, (g ◦ f)(x) = z. As z is arbitrary, this holds
for all z ∈ Z. Thus, (g ◦ f) is surjective.

(iii) By definition of bijectivity, f and g are each injective. So we
can see that, by (i), (g ◦ f) is injective. Similarly, it follows from (ii)
that (g ◦ f) is surjective. Thus, (g ◦ f) is bijective.

(iv) There are really two claims to prove here. First we show that f
is injective. Let x1, x2 ∈ X such that f(x1), f(x2) ∈ Y . Suppose that

f(x1) = f(x2).

Thus,

(g ◦ f)(x1) = (g ◦ f)(x2).

By the injectivity of (g ◦ f),

x1 = x2.

Thus, f is injective.
We now show that g is surjective. Let z ∈ Z. By the surjec-

tivity of (g ◦ f), there exists some x ∈ X such that (g ◦ f)(x) = z.
Thus, g(f(x)) = z where f(x) ∈ Y . Since z is arbitrary, it follows
that g is surjective. ■

Proposition 6 (Exercise 2.15). (i) Let f : X → Y be a function, and
let {Si : i ∈ I} be a family of subsets of X. Then

f

(⋃
i∈I

Si

)
=

⋃
i∈I

f(Si).

(ii) If S1 and S2 are subsets of a set X, and if f : X → Y is a
function, then f(S1 ∩ S2) ⊆ f(S1) ∩ f(S2). There is an example for
which f(S1 ∩ S2) ̸= f(S1) ∩ f(S2).

(iii) If S1 and S2 are subsets of a set X, and if f : X → Y is an
injection, then f(S1 ∩ S2) = f(S1) ∩ f(S2).

Proof. (i) Let y ∈ f

(⋃
i∈I Si

)
. Then there exists some x ∈

⋃
i∈I Si

such that f(x) = y, by definition of the image of f . So, x ∈ Si for some
index i ∈ I. Thus, y = f(x) ∈ f(Si). By the definition of a union,
we see that y ∈

⋃
i∈I f(Si). Since y is arbitrary, the same is true of

all y ∈
⋃

i∈I Si. Thus,



f

(⋃
i∈I

Si

)
⊆

⋃
i∈I

f(Si).

Let y ∈
⋃

i∈I f(Si). Then y ∈ f(Si) for some i ∈ I. By definition of
the image of f , it follows that there exists some element x ∈ Si such

that f(x) = y. Thus, x ∈
⋃

i∈I Si. So, y = f(x) ∈ f

(⋃
i∈I Si

)
. Since y

is arbitrary, this holds for all y ∈
⋃

i∈I f(Si). Thus,

f

(⋃
i∈I

Si

)
⊇

⋃
i∈I

f(Si).

Therefore, set equality follows.
(ii) There are two claims to address for this item. First, fix some

element y ∈ f(S1 ∩ S2). Thus, there exists some x ∈ S1 ∩ S2 such
that f(x) = y, by the definition of a function image. The intersection
implies that x ∈ S1 and x ∈ S2. Thus, y = f(x) ∈ f(S1) and y ∈ f(S2).
By definition of an intersection, y ∈ f(S1)∩ f(S2). Since y is arbitrary,
this holds for all y. So,

f(S1 ∩ S2) ⊆ f(S1) ∩ f(S2).

Second, we find an example that shows the opposite subset inclusion
does not necessarily hold. LetX, Y = R, S1 = (−2, 1) and S2 = (−1, 2),
where S1 and S2 are intervals on the real line. It’s clear that S1, S2 ⊆ X.
Choose your function to be f : R → R defined by the rule f(x) = x2.
Then f(S1) = [0, 4) and f(S2) = [0, 4). So,

f(S1) ∩ f(S2) = [0, 4).

Note that S1 ∩ S2 = (−1, 1). Thus,

f(S1 ∩ S2) = [0, 1).

So, we see that

f(S1 ∩ S2) ̸= f(S1) ∩ f(S2).

(iii) From part (ii), we know that f(S1 ∩ S2) ⊆ f(S1) ∩ f(S2). So,
it suffices to show the opposite inclusion. Let y ∈ f(S1) ∩ f(S2). By
the definition of an intersection, y ∈ f(S1) and y ∈ f(S2). From which
we can see that there exists some x1 ∈ S1 and some x2 ∈ S2 such
that f(x1) = y and f(x2) = y. Hence, f(x1) = f(x2). By the injectivity
of f , x1 = x2. Then it suffices to only consider x1. From above, it
follows that x1 ∈ S1 ∩ S2. Thus, y = f(x1) ∈ f(S1 ∩ S2). Since y is
arbitrary, this holds for all y ∈ f(S1) ∩ f(S2). We conclude that



f(S1 ∩ S2) ⊇ f(S1) ∩ f(S2).

Therefore, set equality holds. ■

Proposition 7 (Exercise 2.16). Let f : X → Y be a function. If
Bi ⊆ Y is a family of subsets of Y then the following are true:

i f−1

(⋃
i∈I Bi

)
=

⋃
i∈I f

−1(Bi) and f−1

(⋂
i∈I Bi

)
=

⋂
i∈I f

−1(Bi),

and

ii If B ⊆ Y , then f−1(B′) = f−1(B)′, where B′ denotes the comple-
ment of B.

Proof. (i) Let x ∈ f−1

(⋃
i∈I Bi

)
. Thus, f(x) ∈

⋃
i∈I Bi, by the defi-

nition of a preimage. So, f(x) ∈ Bi for some i ∈ I, by definition of a
union. It follows then that x ∈ f−1(Bi). Thus, x ∈

⋃
i∈I f

−1(Bi). Then
we can conclude that

f−1

(⋃
i∈I

Bi

)
⊆

⋃
i∈I

f−1(Bi).

For the opposite inclusion, let x ∈
⋃

i∈I f
−1(Bi). Then x ∈ f−1(Bi)

for some i ∈ I. Thus, f(x) ∈ Bi. So, f(x) ∈
⋃

i∈I Bi. Thus, we have

that x ∈ f−1

(⋃
i∈I Bi

)
. This shows that the opposite inclusion holds.

Therefore, set equality holds.
(ii) Let x ∈ f−1(B′). Thus, f(x) ∈ B′. Since B′ is the complement

of B, f(x) ̸∈ B. So, x ̸∈ f−1(B). It follows by the definition of a
complement that x ∈ f−1(B)′. ■

Proposition 8 (Exercise 2.17). Let f : X → Y be a function. Define
a relation on X by x ≡ x′ if f(x) = f(x′). Then ≡ is an equivalence
relation.

Proof. For reflexivity, let x ∈ X. It’s clear that f(x) = f(x). Thus, we
see that x ≡ x.

For symmetry, we assume that x ≡ x′. Thus, f(x) = f(x′). By the
symmetry of equality, f(x′) = f(x). So, x′ ≡ x.

For transitivity, let x1, x2, x3 ∈ X such that

x1 ≡ x2 and x2 ≡ x3.

It follows that f(x1) = f(x2) and f(x2) = f(x3). By the transitivity
of equality, f(x1) = f(x3). So, x1 ≡ x3. We conclude that ≡ is an
equivalence relation. ■


