Math 470: Abstract Algebra Homework 2

Chapter 1 Solutions

Proposition 1 (Exercise 1.65). Suppose that a and b are each positive
integers satisfying gcd(a,b) = 1. If the product ab is square then each
a and b are also squares.

Proof. Suppose that ab < 2. So, ab =1 or ab = 2. We observe that 2
is not a perfect square. So, ab # 2 by hypothesis. If ab = 1 then we see
that both a =1 and b = 1. Thus, a = 1? and b = 1.

Now suppose that ab > 2. Then there exists some positive integer,
say c, satisfying ab = ¢2, because ab is square. Note that ¢ > 2, else
we have ab =1 < 2. By theorem 1.2, we can express ¢ as a product of
primes, say ¢ = py - ... - pi. Thus,

ab=(pr- .. pr)* = (pr- - pr)(Pr - i)

Using the associativity and commutativity of the integers, we can gather
factors with like indices and produce the following expression for ab:

ab=1p3-..-pi.

We observe that if a <2orb<2thena=1orb=1. Then b= ab
or a = ab. But in either case, 1 = 12 and ab is assumed to be square
by hypothesis, so we are done. Thus, we assume that a > 2 and b > 2.
By the fundamental theorem of arithmetic, we know that a and b each
have a prime factorization and each pq, ..., pi is a prime factor of a or b.
Because a and b are relatively prime, each prime pq, ..., pi is exclusively
a factor of a or b. Tt follows that each of p?, ..., p? exclusively belongs
to the prime factorization of a or b. Since the index assignment is
arbitrary, we may re-index if necessary. Then there exists some positive
integer r satisfying 1 < r < k for which

a:pf-...-pf and b:pfﬂ-...-pi.

After rearranging the factors we see that:

a=(pr-...-p)? and b= (Dry1 - Dr)>



Proposition 2 (Exercise 1.69). Suppose that M is some non-negative
integer. Then M s the lem of aq, ..., a, if and only if M is a common
multiple that divides every other common multiple.

Proof. Let N be a common multiple of aq, ..., a,, throughout.

(<) Since M|N, M < N. Since N is arbitrary, M is the smallest
common multiple. Hence, M is the least common multiple.

(=) Let M = 0. Then at least one of ay, ..., a, is 0 by the definition
of the least common multiple. Thus, O|N by choice of N. So, N =0,
because the only number that divides 0 is 0. It follows that M|N.

Suppose that M # 0. By the division algorithm,

N =qM +r

for unique integers ¢ and r such that 0 < r < M. Since a;|M and a4|N,
it follows that a;|(N — ¢M). So, aj|r. By a similar argument, each
of ay,...,a, divides r. Hence, r is a common multiple. But M is the
least positive common multiple, which implies that » = 0, since r < M.
Then N = ¢gM. Thus, M|N. Since N is arbitrary, M divides all
common multiples.

Proposition 3 (Exercise 1.73). A positive integer n is divisible by 11
if and only if the alternating sum of its digits is divisible by 11.

Proof. We first claim the following:

10F = 1 mod 11, it £ is even
| =1mod 11, if k is odd.

It is clear that 10° = 1 mod 11 and 10 = —1 mod 11. Similarly, we
see that 10 = 100 = (9)(11) 4+ 1. Thus, 10> = 1 mod 11. So, assume
that &£ > 2. If k£ is even then

10¥ = (10%)2 = 12 mod 11 = 1 mod 11.

Note that g is an integer, since k is even.
If k£ is odd then k—1 is even. So, we can apply the the result above.
Thus, we have the following:

10F = (10"1)10' = (1)10 mod 11 = 10 mod 11 = —1 mod 11.

This proves our claim.
We now show that the proposition holds. Suppose that k is even.
By the claim above, the following holds:

dpl0F + ...+ dymod 11 =dy, — dp_q + ... — dy + dy mod 11.



Similarly, when £ is odd the congruence below is true.

dp10F + ...+ dymod 11 = —dy, + dy_1 + ... — dy + dp mod 11

In either case, if one side is congruent to 0 mod 11 then the other
side is also congruent to 0 mod 11 by the transitivity of congruence
modulo 11. It follows that n is divisible by 11 if and only if the alter-
nating sum of the digits of n is congruent modulo 11.

Chapter 2 Solutions

Proposition 4 (Exercise 2.3i-iii). If A and B are subsets of a set X,
define their symmetric difference by

A+B=(A-B)U(B—-A)
Then the following hold:

(i) A+ B=(AUB)— (AN B)
(ii)) A+ A=0
(iii) A+ 0= A.

Proof. (i) Let # € A+ B. Then x € (A—B)U(B—A), by the definition
of A+ B. So,z € (A—B) or z € (B— A), by the definition of a union.

Suppose that z € (A— B). Then, z € A and = ¢ B. It then follows
that x € AU B, by the definition of a union and x ¢ A N B, by the
definition of an intersection. But this implies 2z € (AUB) — (AN B), by
the definition of a set difference. The argument for when z € (B—A) is
similar. Since x is an arbitrary element, this will hold for all z € A+ B.
Thus,

A+BC(ANB)—(ANB).

Let z € (AU B) — (AN B), by the definition of a set difference.
Then z € (AUB) and z ¢ (AN B). Since x € AU B, it follows
that * € A or x € B. However, because x ¢ A N B this “or” is
exclusive.

So, if we assume that x € A then © ¢ B. Following this line of
thought, we see that + € (A — B). So, z € (A— B)U (B — A), by
the definition of a union. If we assume that x € B then it follows
that © € (A — B) U (B — A) by similar reasoning. Thus,

A+BD(ANB)—(ANB).



Therefore, the claim of (7) holds, by the definition of set equality.
(ii) We observe that A — A = {x € Alx ¢ A}, by the definition of a
set difference. Since x € A or x ¢ A exclusively, there are no elements
in A— A. Thus, A— A = (. Then

A+ A=(A-AUA-A)=0Ud=0.

(iii) Observe that A — 0 = {z € Alx ¢ 0}. Since the empty set has
no elements at all, it shares no elements with A. Thus, z € A — 0 if
and only if z € A. A— 0 = A.

Also, (0 — A) = {z € 0|z ¢ A}. Since there are, by definition of the
emptyset, no elements x € (), then there are no x € () such that z € A.
It follows that () — A) = 0.

Using the definition of A + B and the definition of a union, we
conclude that

A+D0=(A-0)ud—-A) =AU = A.
|

Proposition 5 (Exercise 2.13). Let f : X — Y and g : Y — Z be
functions. Then the following are true:

(i) If both f and g are injective, prove that g o f is injective.
(ii) If both f and g are surjective, prove that g o f is surjective.
(iii) If both f and g are bijective, prove that g o f is bijective.
(iv) If go f is a bijection, then f is an injection and g is a surjection.

Proof. (i) Let 21,29 € X. Then observe that (go f)(z1), (go f)(x2) € Z.
Suppose

(go [)(x1) = (go f)(z2).
Thus,

9(f(z1)) = g(f(x2)).
By the injectivity of g,

f(z1) = f(z2).
Then by the injectivity of f,

Tr1 = To.

So, (g o f) is injective.



(ii) Let z € Z. By the surjectivity of g, there exists some y € Y
such that g(y) = z. By the surjectivity of f, there exists some z € X
such that f(x) =y. Hence, (go f)(z) = z. As z is arbitrary, this holds
for all z € Z. Thus, (g o f) is surjective.

(iii) By definition of bijectivity, f and g are each injective. So we
can see that, by (i), (g o f) is injective. Similarly, it follows from (ii)
that (g o f) is surjective. Thus, (g o f) is bijective.

(iv) There are really two claims to prove here. First we show that f
is injective. Let x1, 29 € X such that f(x1), f(xz2) € Y. Suppose that

f(z1) = f(z2).
Thus,

(g0 f)x1) = (g0 f)(x2).
By the injectivity of (g o f),

Xr1 = To.

Thus, f is injective.

We now show that g is surjective. Let z € Z. By the surjec-
tivity of (g o f), there exists some x € X such that (g o f)(x) = =z.
Thus, ¢g(f(z)) = z where f(z) € Y. Since z is arbitrary, it follows
that ¢ is surjective. [ |

Proposition 6 (Exercise 2.15). (i) Let f : X — Y be a function, and
let {S; : 1 € I} be a family of subsets of X. Then

r(Us) =Ureso.
i€l iel

(i) If Sy and Sy are subsets of a set X, and if f : X — Y is a
function, then f(S1 N Sy) C f(S1) N f(S2). There is an example for
which f(S10S2) # f(S1) N f(S2).

(iii) If Sy and Sy are subsets of a set X, and if f: X — Y is an
injection, then f(S1 N Sy) = f(S1) N f(S2).

Proof. (i) Let y € f(UieI Si>. Then there exists some = € (J,; S

such that f(z) =y, by definition of the image of f. So, x € S; for some
index i € I. Thus, y = f(z) € f(S;). By the definition of a union,
we see that y € (J,c; f(S;). Since y is arbitrary, the same is true of
all y € (J;e; Si- Thus,



f(U&)QUﬂ&)
iel iel

Let y € U;e; f(Si)- Then y € f(S;) for some i € I. By definition of
the image of f, it follows that there exists some element x € S; such

that f(z) = y. Thus, x € (J,.; Si- So, y = f(x) € f(UieI SZ-). Since y
is arbitrary, this holds for all y € UJ,.; f(5;). Thus,

(Us) 2U s
iel iel
Therefore, set equality follows.

(ii) There are two claims to address for this item. First, fix some
element y € f(5; N Sy). Thus, there exists some = € S; N Sy such
that f(x) = y, by the definition of a function image. The intersection
implies that z € S} and = € Sy. Thus, y = f(x) € f(S1) and y € f(S2).
By definition of an intersection, y € f(S57) N f(S2). Since y is arbitrary,
this holds for all y. So,

f(S1NS2) C f(S1) N f(S2).

Second, we find an example that shows the opposite subset inclusion
does not necessarily hold. Let X, Y =R, S = (=2,1) and S, = (-1, 2),
where S7 and Sy are intervals on the real line. It’s clear that 51,5, C X.
Choose your function to be f : R — R defined by the rule f(z) = 2.
Then f(S;) =[0,4) and f(S2) = [0,4). So,

f(S1) N f(S2) = [0,4).
Note that S; NSy = (—1,1). Thus,

f(S1NSy) =[0,1).

So, we see that

f(S1NSy) # f(S1) N f(S2).

(iii) From part (ii), we know that f(S; N Sy) C f(S1) N f(S2). So,
it suffices to show the opposite inclusion. Let y € f(S1) N f(S2). By
the definition of an intersection, y € f(51) and y € f(S2). From which
we can see that there exists some x; € S; and some z5 € Sy such
that f(x;) =y and f(x2) = y. Hence, f(x1) = f(x2). By the injectivity
of f, x1 = xy. Then it suffices to only consider x;. From above, it
follows that z; € S; N Sy. Thus, y = f(z1) € f(S1 N Sy). Since y is
arbitrary, this holds for all y € f(S1) N f(S2). We conclude that



f(S11.82) 2 f(S1) N f(S2).
Therefore, set equality holds. [

Proposition 7 (Exercise 2.16). Let f : X — Y be a function. If
B; CY s a family of subsets of Y then the following are true:

i f_1<U¢e1 Bi) = Uier f71(B) cmdf—1<ﬂi€1 Bz’) = Nics f7H(BY),

and

i If BCY, then f~Y(B') = f~Y(B)’, where B' denotes the comple-
ment of B.
icl

Proof. (i) Let x € f‘l(U Bz). Thus, f(x) € U, Bi, by the defi-

nition of a preimage. So, f(z) € B; for some i € I, by definition of a
union. It follows then that « € f~*(B;). Thus, z € {J,c; f~'(B;). Then
we can conclude that

S (UB’L) C Uf_l(Bi)-
iel iel
For the opposite inclusion, let z € (J,.; f~'(B;). Then z € f~1(B)
for some i € I. Thus, f(z) € B;. So, f(x) € J,c; Bi- Thus, we have

that x € f! Uier Bi |- This shows that the opposite inclusion holds.

Therefore, set equality holds.

(ii) Let € f~*(B’). Thus, f(x) € B'. Since B’ is the complement
of B, f(x) € B. So, z & f~'(B). It follows by the definition of a
complement that x € f~!(B)'. [

Proposition 8 (Exercise 2.17). Let f : X — Y be a function. Define
a relation on X by x = 2’ if f(x) = f(a'). Then = is an equivalence
relation.

Proof. For reflexivity, let x € X. It’s clear that f(z) = f(z). Thus, we
see that v = z.

For symmetry, we assume that © = 2/. Thus, f(z) = f(2’). By the
symmetry of equality, f(z') = f(z). So, 2’ = x.

For transitivity, let 1, x5, 23 € X such that

1 = To and Ty = T3.

It follows that f(x1) = f(x2) and f(z3) = f(x3). By the transitivity
of equality, f(x1) = f(z3). So, x;1 = x3. We conclude that = is an
equivalence relation. [ |



