HW 10 Selected solutions
 Prof. Shahed Sharif

3.3 For (i), $(3-2)-1=1-1=0$, while $3-(2-1)=3-1=2$. For (ii), $\mathbb{Z} / 2 \mathbb{Z}$ works, since in that ring, + and - mean the same thing!
3.4 Use $\mathrm{R}=\mathbb{Z}$.
3.5 Straightforward.
3.7 Part (i) is straightforward. For part (ii), the function does not have to be that nice.
A. Define $\varphi: \mathrm{G} \rightarrow \mathrm{H}$ be given by $\varphi(x)=x^{2}$. We have

$$
\begin{aligned}
\varphi(x y) & =(x y)^{2} \\
& =x^{2} y^{2} \\
& =\varphi(x) \varphi(y)
\end{aligned}
$$

so φ is a homomorphism. Every positive real number has a real square root, so φ is surjective. As $\varphi(1)=1^{2}=1$ and $\varphi(-1)=(-1)^{2}=1$, we have $\{ \pm 1\} \subset \operatorname{ker}(\varphi)$. On the other hand, if $\varphi(x)=1$, then $\chi^{2}=1$, so $x= \pm 1$. Therefore the kernel is exactly $\{1,-1\}$. The claim now follows from the 1 st Isomorphism Theorem.
B. Let $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $\varphi(x, y)=8 x-5 y$. We first show that φ is a homomorphisms. Let $(x, y),(w, z) \in \mathbb{Z} \times \mathbb{Z}$. Then

$$
\begin{aligned}
\varphi(x+w, y+z) & =8(x+w)-5(y+z) \\
& =8 x-5 y+8 w-5 z \\
& =\varphi(x, y)+\varphi(w, z)
\end{aligned}
$$

Next, the image is the set of linear combinations of 8 and 5 , which is the set of multiples of $\operatorname{gcd}(8,5)$. But $\operatorname{gcd}(8,5)=1$, and therefore φ is surjective. More concretely, for $n \in \mathbb{Z}, \varphi(2 n, 3 n)=16 n-15 n=n$.
Next we compute ker φ. We have $\varphi(5,8)=8 \cdot 5-5 \cdot 8=0$, so $(5,8) \in \operatorname{ker} \varphi$, and hence $\langle(5,8)\rangle \subset \operatorname{ker} \varphi$. Now suppose $(x, y) \in \operatorname{ker}(\varphi)$. This means that $8 x-5 y=0$, or $8 x=5 y$. We have $5 \mid 5 y$, hence $5 \mid 8 x$. But $5 \nmid 8$, so by Euclid's Lemma, $5 \mid x$. Thus we may write $x=5 n$. Substituting, we get $40 n=5 y$, and so $y=8 n$. This shows that $(x, y)=(5 n, 8 n) \in\langle(5,8)\rangle$. Therefore $\operatorname{ker}(\varphi)=\langle(5,8)\rangle$.
Finally, we invoke the 1st Isomorphism Theorem, and the claim follows.
C. Define $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}_{2}$ by $\varphi(x, y)=(3 x-8 y,[y])$, where [$\left.y\right]$ means the class of $y \bmod 2$. I omit the proof that this is a homomorphism; it is similar to B. Observe that $\varphi(-5,-2)=(1,0)$ and $\varphi(8,3)=(0,1)$. It follows that

$$
\varphi(a(-5,-2)+b(8,3))=(a, b)
$$

and so φ is surjective.
Now we compute $\operatorname{ker}(\varphi)$. We have that $\varphi(16,6)=(3 \cdot 16-8 \cdot 6,[6])=$ $(0,0)$, so $(16,6) \in \operatorname{ker}(\varphi)$. Since the kernel is a subgroup, this implies that $\langle(16,6)\rangle \subset \operatorname{ker}(\varphi)$. Now suppose $(x, y) \in \operatorname{ker}(\varphi)$. Then $3 x-8 y=0$ and $2 \mid y$. We have $3 x=8 y$, so $3 \mid 8 y$, and therefore by Euclid's Lemma, $3 \mid y$. But also $2 \mid y$, and hence $6 \mid y$. Thus we may write $y=6 n$. Therefore $3 x=48 n$, and so $x=16 n$. Thus $(x, y)=(16 n, 6 n) \in\langle(16,6)\rangle$. We conclude that $\operatorname{ker}(\varphi)=\langle(16,6)\rangle$.
The result now follows from the 1st Isomorphism Theorem.
D. Use the definitions.
E. Use the definitions, and that $\exists g$ with $g x=y$.
F. Do out a couple examples. For instance, take the sequence given by $a_{n}=n$ ($n \geq 1$), and pick various g.

