HW 10 Selected solutions Prof. Shahed Sharif

- 3.3 For (i), (3-2)-1 = 1-1 = 0, while 3 (2-1) = 3 1 = 2. For (ii), $\mathbb{Z}/2\mathbb{Z}$ works, since in that ring, + and mean the same thing!
- 3.4 Use $R = \mathbb{Z}$.
- 3.5 Straightforward.
- 3.7 Part (i) is straightforward. For part (ii), the function does not have to be that nice.
- A. Define φ : G \rightarrow H be given by $\varphi(x) = x^2$. We have

$$\begin{split} \phi(xy) &= (xy)^2 \\ &= x^2 y^2 \\ &= \phi(x)\phi(y), \end{split}$$

so φ is a homomorphism. Every positive real number has a real square root, so φ is surjective. As $\varphi(1) = 1^2 = 1$ and $\varphi(-1) = (-1)^2 = 1$, we have $\{\pm 1\} \subset \ker(\varphi)$. On the other hand, if $\varphi(x) = 1$, then $x^2 = 1$, so $x = \pm 1$. Therefore the kernel is exactly $\{1, -1\}$. The claim now follows from the 1st Isomorphism Theorem.

B. Let $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be given by $\varphi(x, y) = 8x - 5y$. We first show that φ is a homomorphisms. Let $(x, y), (w, z) \in \mathbb{Z} \times \mathbb{Z}$. Then

$$\varphi(\mathbf{x} + \mathbf{w}, \mathbf{y} + z) = 8(\mathbf{x} + \mathbf{w}) - 5(\mathbf{y} + z)$$
$$= 8\mathbf{x} - 5\mathbf{y} + 8\mathbf{w} - 5z$$
$$= \varphi(\mathbf{x}, \mathbf{y}) + \varphi(\mathbf{w}, z).$$

Next, the image is the set of linear combinations of 8 and 5, which is the set of multiples of gcd(8,5). But gcd(8,5) = 1, and therefore φ is surjective. More concretely, for $n \in \mathbb{Z}$, $\varphi(2n, 3n) = 16n - 15n = n$.

Next we compute ker φ . We have $\varphi(5,8) = 8 \cdot 5 - 5 \cdot 8 = 0$, so $(5,8) \in \ker \varphi$, and hence $\langle (5,8) \rangle \subset \ker \varphi$. Now suppose $(x,y) \in \ker(\varphi)$. This means that 8x - 5y = 0, or 8x = 5y. We have $5 \mid 5y$, hence $5 \mid 8x$. But $5 \nmid 8$, so by Euclid's Lemma, $5 \mid x$. Thus we may write x = 5n. Substituting, we get 40n = 5y, and so y = 8n. This shows that $(x, y) = (5n, 8n) \in \langle (5,8) \rangle$. Therefore $\ker(\varphi) = \langle (5,8) \rangle$.

Finally, we invoke the 1st Isomorphism Theorem, and the claim follows.

C. Define $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_2$ by $\varphi(x, y) = (3x - 8y, [y])$, where [y] means the class of y mod 2. I omit the proof that this is a homomorphism; it is similar to B. Observe that $\varphi(-5, -2) = (1, 0)$ and $\varphi(8, 3) = (0, 1)$. It follows that

$$\varphi(a(-5,-2)+b(8,3))=(a,b),$$

and so φ is surjective.

Now we compute ker(φ). We have that $\varphi(16, 6) = (3 \cdot 16 - 8 \cdot 6, [6]) = (0, 0)$, so $(16, 6) \in \text{ker}(\varphi)$. Since the kernel is a subgroup, this implies that $\langle (16, 6) \rangle \subset \text{ker}(\varphi)$. Now suppose $(x, y) \in \text{ker}(\varphi)$. Then 3x - 8y = 0 and $2 \mid y$. We have 3x = 8y, so $3 \mid 8y$, and therefore by Euclid's Lemma, $3 \mid y$. But also $2 \mid y$, and hence $6 \mid y$. Thus we may write y = 6n. Therefore 3x = 48n, and so x = 16n. Thus $(x, y) = (16n, 6n) \in \langle (16, 6) \rangle$. We conclude that ker(φ) = $\langle (16, 6) \rangle$.

The result now follows from the 1st Isomorphism Theorem.

- D. Use the definitions.
- E. Use the definitions, and that $\exists g$ with gx = y.
- F. Do out a couple examples. For instance, take the sequence given by $a_n = n$ $(n \ge 1)$, and pick various g.