HW 1 Selected Solutions
 Prof. Shahed Sharif

1.17 We do this by strong induction. The cases of F_{0} and F_{1} are easy. (The inductive step required knowing the previous 2 cases, so the base case needs to do the first 2 cases.) For the inductive step, assume that for $k<n$, $F_{k}<2^{k}$. Then

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
& <2^{n-1}+2^{n-2} \\
& <2^{n-1}+2^{n-1} \\
& =2^{n} .
\end{aligned}
$$

By induction, the claim holds.
1.47 I will show existence by strong induction. The base case is $m=1$, in which case we have $1=2^{0}$. For the inductive step, suppose every $m \geq 2$ and for ever $1 \leq k<m, k$ can be written as a sum of distinct powers of 2 . Since $2^{0}<m, \lim _{n \rightarrow \infty} 2^{n}=\infty$, and 2^{n} is strictly increasing, there is some n such that $2^{n} \leq m<2^{n+1}$. If $m=2^{n}$, then we are done. Otherwise, let $k=m-2^{n}$, so that $1 \leq k<m$. By our inductive hypothesis, we can write k as a distinct sum of powers of 2 ; say,

$$
k=2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{r}} .
$$

Without loss of generality, $e_{1}<e_{2}<\cdots<e_{r}$. Thus

$$
m=2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{r}}+2^{n}
$$

It remains to show that $n \neq e_{i}$ for all i. But if we had $e_{i}=e_{n}$ for some i, then we would get

$$
\begin{aligned}
m & =2^{e_{1}}+2^{e_{2}}+\cdots+2^{e_{r}}+2^{n} \\
& \geq 2^{e_{i}}+2^{n} \\
& =2^{n}+2^{n} \\
& =2^{n+1} .
\end{aligned}
$$

In particular, $m \geq 2^{n+1}$, which contradicts our choice of n. Therefore m can be written as a sum of distinct powers of 2 .
There is a cute alternative method of proving the statement without induction, which I skethch out. One first shows uniqueness. Then choose m, find n so that $2^{n+1}>m$, and consider the set B_{n} of all numbers of the form

$$
a_{0}+a_{1} 2^{1}+a_{2} 2^{2}+\cdots+a_{n} 2^{n}
$$

with $a_{i}=0$ or 1 for all i. By the uniqueness, these numbers are all distinct. The smallest number of this form is 0 , and the largest, when all of the a_{i} are 1 , is $2^{n+1}-1$. There are exactly 2^{n+1} numbers in this range. But by the Multiplication Principle, $\# B_{n}=2^{n+1}$, and so every number in the range must occur. In particular, m must be in B_{n}, and so can be written as a sum of distinct powers of 2 .
Finally, there is a quick, somewhat cheesy (but correct) way of doing this problem: just reference Prop. 1.44 and observe that the d_{i} must be 0 or 1 .
1.54 Let $s_{k}=s+k b$ and $t_{k}=t-k a$. Since $(a, b) \neq(0,0)$, the pairs $\left(s_{k}, t_{k}\right)$ are all distinct. Finally, we have

$$
\begin{aligned}
s_{k} a+t_{k} b & =(s+k b) a+(t-k a) b \\
& =s a+t b+k b a-k a b \\
& =s a+t b \\
& =d .
\end{aligned}
$$

