Math 470: Exam 1

October 4, 2023

Make sure to show all your work as clearly as possible. This includes justifying your answers if required. Avoid using the back of the page; instead, there is an extra sheet at the end that you can use. Calculators are not allowed.

1. (10 points) Find $\operatorname{gcd}(775,387)$.
2. \qquad

Solution: We have $775=2 \cdot 387+1$, so $\operatorname{gcd}(775,387)=\operatorname{gcd}(387,1)=1$.
2. (10 points) If n is odd, prove that $n^{2} \equiv 1(\bmod 4)$.

Solution: If n is odd, then $n \equiv 1$ or $3(\bmod 4)$. In either case, squaring both sides yields $n^{2} \equiv 1(\bmod 4)$. Alternatively, write $n=2 k+1$ and square.
3. Let X, Y, Z be sets and $f: X \rightarrow Y, g: Y \rightarrow Z$ be functions. Suppose that $g \circ f$ is a bijection.
(a) (10 points) Prove that f is an injection.
(b) (10 points) Prove that g is a surjection.
(c) (10 points) True or false: both f and g must in fact be bijections. Prove your answer if true, and give a counterexample if false.

Solution: All three were homework problems; see those solutions.
4. Let $\alpha=(1235)(24567)(1872)(2946)$ be an element of S_{11}.
(a) (10 points) Write α as a product of disjoint cycles.

Solution: (1835629)(47)
(b) (5 points) Compute the inverse of α, as a product of disjoint cycles.

Solution: $(9265381)(74)$ (they are disjoint, hence commute, hence the order of the two cycles doesn't matter)
(c) (5 points) Compute $\operatorname{sgn}(\alpha)$.

Solution: The first cycle has length 7, so is even. The second is odd. Therefore the product is odd, $\operatorname{so} \operatorname{sgn}(\alpha)=-1$.
5. (10 points) Let $\sigma, \tau \in S_{n}$ be

$$
\begin{gathered}
\sigma=\left(\begin{array}{llll}
1 & 2 & \cdots & n
\end{array}\right) \\
\tau=\left(\begin{array}{ll}
1 & 2
\end{array}\right)
\end{gathered}
$$

Prove that $(i i+1)$ can be written as a product of powers of σ and τ for any $1 \leq i \leq n-1$.

Solution: We do this by induction. The base case, $i=1$ is just τ itself. Now suppose we can get $(i-1 i)$ as a product of powers of σ and τ for $2 \leq i \leq n-1$. Observe that $\sigma(i-1)=i$ and $\sigma(i)=i+1$. By a result in the text,

$$
\sigma(i-1 i) \sigma^{-1}=(i i+1)
$$

Applying our inductive hypothesis on the transposition on the left, we obtain the conclusion for $(i i+1)$. By induction, the claim follows.
6. No proofs necessary for this problem.
(a) (5 points) Give an example of an abelian group with 6 elements.
(a) \qquad
(b) (5 points) Give an example of a nonabelian group with 6 elements.
\qquad
(c) (5 points) Give an example of an infinite nonabelian group.
(c) \qquad

Solution: For the first, \mathbb{Z}_{6}. For the second, D_{6} or S_{3}. For the third, there are many answers; the simplest is probably the set of 2×2 invertible real matrices, also written $\mathrm{GL}_{2}(\mathbb{R})$.
7. (15 points) Consider \mathbb{Z} under the operation $x * y=x+y+1$. Prove that $(\mathbb{Z}, *)$ is a group.

Solution: Certainly \mathbb{Z} is closed under $*$. Let $x, y, z \in \mathbb{Z}$. Then

$$
\begin{aligned}
(x * y) * z & =(x+y+1) * z \\
& =x+y+1+z+1 \\
& =x+(y+z+1)+1 \\
& =x *(y * z)
\end{aligned}
$$

Thus * is associative.
We have

$$
\begin{aligned}
x *(-1) & =x-1+1 \\
& =x
\end{aligned}
$$

and similarly $(-1) * x=x$. Therefore -1 is the identity.

Lastly,

$$
\begin{aligned}
x *(-2-x) & =x-2-x+1 \\
& =-1
\end{aligned}
$$

so the inverse of x is $-2-x$.

