Math 424 Fall 2024
Python tutorial
Prof. Shahed Sharif
Contents
1 Getting started 1
2 Basics of programming 1
2.1 Putting the parts together 2
3 Basics of Python 2
3.1 Arithmetic 3
32 Data....... 3
33 Booleans 5
34 Controlflow 5
4 Functions and syntax 7
41 Writing down the algorithm, 7
42 Typinguptheprogram 8
5 Good practices 9
51 Startonpaper o 9
5.2 Write doc strings and comments 9
5.3 Use many smaller programs 9
54 Debugwithtables. 10
6 Rules for turning in programs 11
7 Further reading 12
8 Homework 12
1 Getting started

Make sure you have Python 3 installed. It should come bundled with the IDLE
application. But don’t open it yet! Also, even if you don't finish today, make
sure you read through to the end.

2

Basics of programming

What a computer program does—and by extension, how we understand com-

puter programming—can be divided up into five parts:

1of12

Math 424 Python tutorial
Fall 2024

I/O. This stands for “input/output”. That is, the program will often ask for
some information from the user (input), and at some point will display results
(output). This can be very complicated if, for example, your program is a video
game. For us, I/O will be very simple.

Arithmetic. Programs can do arithmetic. This means the 4 standard arith-
metic operations.

Data. A program stores and manipulates data. Data is, broadly, stored in vari-
ables, of which there are a number of different types. A program can change the
content of a variable, and also read the contents of a variable.

Booleans. A program can determine the truth or falsity of certain types of
statements. A Boolean value is essentially either “true” or “false”, and a Boolean
function is something that inputs a bunch of statements and, based on the truth
of those statements, outputs a Boolean value.

Control flow. Control flow refers to the order in which the computer executes
commands. One way of looking at this is that control flow instructs the com-
puter what it should do next. The most important part of control flow is itera-
tion or loops; that is, doing the same or similar tasks or calculations repeatedly.
Computers are much better suited to iteration than humans!

2.1 Putting the parts together

Any algorithm can be put together out of these constituent parts. When writing
a program, your first task should be to figure out how to write your algorithm
out of these parts. You should do this away from the computer!

3 Basics of Python

Okay, now you can start IDLE! When you do, you'll see a window on your
screen which is called a “Python shell” or “Python interpreter”. It’s essentialy
a glorified calculator. When you see stuff that looks like programming in this
document (see below), type out each line exactly as you see it and press enter.
If you get an error, it is overwhelmingly likely that you typed something in-
correctly. Pay particular attention to tabs at the beginnings of lines—these are
crucial to how Python functions!

When you get an output, make sure to understand why Python gave you
that output.

20f12

Math 424 Python tutorial
Fall 2024

3.1 Arithmetic

543
5-3
5*3
5*%(2+3)
25/3
25//3

Note the difference between integer division and regular division!
There are some more useful operations; see if you can determine what they
do:

2%*3
17%5

Throughout, you'll see commands which I won't explain. Make sure to figure
out what they do, and test your guesses with your own input!

3.2 Data

There are three basic data types we’ll discuss: numbers, strings, and lists. As
you've already seen, there are actually two types of numbers: integers and dec-
imals (called “floats” in computer science). We’ll mainly work with integers.
A string is just a sequence of characters, such as a text message. We’ll discuss
lists in a bit.

x=5

X

print(x)

X+3

X=X+4

X

(x,y) = (3,5)
print(y,x)

X, Y=Y, X
print(y,x)
X,y = X+y, X-y
X,y

x="hi’

X

Note that = denotes assignment; that is, the expression on the right is evaluated,
then assigned to the variable on the left. Also observe the commands x,y = y,x
and x,y = x+y, x-y. Unlike in a lot of computer languages, in Python it is easy
to swap variables or do multiple assignments without running into problems.

30f12

Math 424 Python tutorial
Fall 2024

Strings are enclosed in quotes; either single or double-quotes are fine for
simple cases. There are subtle differences between them which are relevant in
more complex situations.

Lists are finite sequences of other data types. You can think of them as vectors,
except you can change the length of the list as much as you like. Elements of a
list can be numbers, strings, or even other lists. Some of the commands below
give errors; why?

1i=[1,2, "apple’]
1i[0]

1i[2]

1i[3]

len(1i)
li[len(li)]
li[len(li)-1]
1i[1:2]
1i[1:3]

1i[1:1]

1i[:2]
li=li+['pear’]
1i

1i=1i[1:]

1i

m=11i+11

m

As you can see, list operations are very intuitive. Some list operations can be
used with strings as well.

s="hell’
s=s+'0’

s

s[1]
"j'+s[1:]

There’s much more to say about lists, and I'd strongly recommend doing some
further reading on them. When in doubt, the input and output of your pro-
grams should be lists.

40f12

Math 424 Python tutorial
Fall 2024

3.3 Booleans

We start with a single variable assignment (x = 3) and proceed with some
truth tests and more complex boolean functions (such as AND and OR). Note
the difference between = and ==.

X=3

X==

X==2

x<3

x<4

x!1=4

x!1=3

x==3 and x<4
x==3 and x<2
X==3 or x<2
not (x==3 or x<2)

not x!=4
x="hi’
x+' there’=="hi there’

One handy trick that comes up when using control structures is that 6 and []
are equivalent to False, while all other values are considered True.

3.4 Control flow

Here’s a simple loop:

for i in range(1,10):
print(i)

When entering this into the interpreter, you need to hit enter on a blank line to
let Python know you're done with the loop. (That is, after typing print(i), hit
enter twice.)

Observe the colon, indentation, and how the output relates to the bounds
in the range declaration. IDLE should take care of the indentation for you, but
only to a certain extent: to end the indentation, you have to press backspace on
a new line.

What the loop does is start i at the value 1, execute the indented code, then
increment i to the next value, 2. This continues until i hits the last value, 10, at
which point the loop ends without executing the indented code. We call i the
index for the loop.

Here’s a useful variant:

for i in range(10):
print(i)

50f12

Math 424 Python tutorial
Fall 2024

In mathematical programs, we usually use an additional variable within a loop
which calculates something. For example, if we wanted to compute 1+ 2 +
-+ +9, we could do it as follows:

sum = 0

for i in range(1,10):
sum = sum + 1

sum

(That last line could have been print (sum).)
Another way of making loops is with while.

i, sum =0, 0
while i<10:

sum += i
sum

(Remember to hit enter twice after the last line!) Using while is almost always
better than using for. The reason is that with for, you have to specify ahead of
time how often the program will loop. With while, you get flexibility—the loop
keeps going until the Boolean after while (in our case, i<10) evaluates to false.
For this reason, the Boolean after while is called the termination condition for the
loop.

Exercise 1. What happens if you do the same program, but with the two in-
dented lines reversed? Guess first, then try it!

A common construction is to create, read, or change a list inside a loop. With
a for loop, we usually use range(0,len(list)) or something similar.
The last control structure is the if/else declaration.

if i%2==0:

print(i, ’'is even’)
else:

print(i, 'is odd’)

The else is optional.

Exercise 2. Compute the 100th triangular number without the formula. Do
it in two different ways: using a for loop and a while loop.

Exercise 3. Given that the third Fibonacci number is 2, compute the 30th Fi-
bonacci number. (Hint: you will need more than one variable.)

Exercise 4. Create a list of the numbers 1 through 100; by “list”, I mean the
data type, so [1, 2, ..., 100]. Start with 11 = [].

6 of 12

Math 424 Python tutorial
Fall 2024

4 Functions and syntax

We now figure out how to put everything together to write a program. As an
example, we’ll recreate multiplication of positive integers; that is, given positive
integers a and b, we want to write a program which outputs the product of the
two using only addition.

4.1 Writing down the algorithm
The key to writing a program is answering the questions
e “What are we looping?” and

e “How do we know when to stop looping?”

We should first do this on paper! We write down what we want in plain
English:

1. Given a,b € IN.
2. Write down a on a paper b times.
3. Add together.

Okay, not too bad. However, this doesn’t answer either of our questions. For
the first question, in step 2 we are looping adding a each time. For the second
question, we stop once we’ve done b iterations. To implement the loop, we can
use for or while; for this example, I will use while.

1. Given a,b € IN.
2. Start a running total at 0.

(a) Add a to our running total.
(b) If we’ve done this b times, stop the loop.
(c) Ifnot, go back to (a).

3. Output the running total.

To make the loop work, we’ve introduced two new quantities: the running total,
and the number of times we’ve been in the loop. The first quantity we can call
p for product, while the second quantity is a counter related to b. The counter
can start at 0 and work its way up to b, or can start at b and count down to 0. I
will choose the latter, for reasons that will become apparent. When we do this,
the termination condition is that the counter reaches 0.

7 of 12

Math 424 Python tutorial
Fall 2024

4.2 Typing up the program

To type up the program, you can enter it into the same window you've been
using this whole time, but you should not. Instead, in the File menu, click on
“New window.” This will open a different window which is essentially just
a text editor, but one which is specialized to editing Python. Type out your
program in this new window, save the file as a “.py’ file, and then run it with
the “Run module” command in the Run menu. The results will appear in the
interpreter window. Note that all flow declarations end in a colon, and all in-
structions inside it are indented. The same formalism holds for functions, as
you can see below.
def dumb multiply(a,b):

"""Multiply positive integers a and b.”””

p=20

while b!=0:

p,b = p+a, b-1
return p

Note that our counter is b itself! To understand how the program works,
I recommend choosing small values of input and try executing the program
yourself, on a piece of paper (not with the computer).

Once you've typed the above and used “Run Module”, you'll have defined
the function dumb_multiply as a function of two arguments. In the interpreter
you can use the function by entering, for example, dumb_multiply(5,8). This
looks just like a mathematical function, in this case of two variables.

Note that the program ends with a return statement. Run on its own, return
acts just like print. However, return is superior because the output of return
can be used as the input of another program. Indeed, complex programs are
typically split into pieces, where one function will call the results of another.
Note however that a return statement, unlike print, ends the enclosing function
immediately.

Lastly, the variables a and b are localized, so even though their values are
changed inside the function, they are not changed outside of the function. That
is, if we did

a=18

b=15
dumb_multiply(a,b)
b

then the value of b is still 15, even though the value of b appears to change inside
dumb_multiply.

Exercise 5. Write a program str_to_num that inputs a string (consisting only
of capital letters) and outputs a list of number, 0-25, giving the numerical
representation of the string, just as in the shift cipher. So

str_to num(’ABC’) = [0, 1, 2] and str_to num(’ZAP’) = [25, 0, 15].

8 of 12

Math 424 Python tutorial
Fall 2024

Exercise 6. Write a program num_to_str that does the reverse: on input a list
of numbers (where each number is from 0-25), the program outputs a
string of capital letters, each character corresponding to the appropriate
number in the list. Thus

num_to str([0,1,2]) = 'ABC’ and num_to str([25, O, 15] = 'ZAP’.

Exercise 7. Write a program num_shift that on input a list of numbers 0-25
and a key k, adds k mod 26 to each number of the list. So

num_shift([®, 1, 251, 3) = [3, 4, 2] and
num_shift([0, 1, 25], -49) = [3, 4, 2].

5 Good practices

5.1 Start on paper

This is important! Never start programming at your computer! Start at your
physical, paper notebook. If you can’t get it right on paper, there’s no chance
you'll get it right at the keyboard.

5.2 Write doc strings and comments

Look at the second line of the dumb_multiply function above. The text inside
the triple quotes is called the doc string for the function. It provides a brief
description of the function, and is always a good idea to include.

Any text beginning with the hash symbol # is considered a comment; that is,
it is ignored by Python. This is good to explain your program to someone else
reading your code, or more importantly, yourself in a few weeks when you're
reusing the same program!

Here’s the dumb multiplication function with lots of comments:
def dumb multiply(a,b):

"""Multiply positive integers a and b.”””
p=0#pwill be the product
while b!=0: # loop by decrementing b
p,b = p+a, b-1
return p # we’re done with the program. Champagne time!

5.3 Use many smaller programs

For long, complicated programs, break up the problem into several pieces and
program them separately. As a simple example, suppose you want to input the
lengths of two legs of a right triangle, then compute the sine of the smallest
angle. You could do this in pieces as follows:

9of12

Math 424 Python tutorial
Fall 2024

def hypotenuse(a,b):
"""Compute the hypotenuse of a right triangle.

Legs have length a and b.”"”
return (a**2 + b**2)**(0.5)

def triangle sin(a,b):

"""Compute sine of smallest angle of right triangle.

a, b are lengths of legs.”””
if a<b:

return a/hypotenuse(a,b)
else:

return b/hypotenuse(a,b)

Exercise 8. Write a program caesar that on input a string and a key, outputs
the appropriate Caesar shift. So

caesar('HI’, 1) = 'IJ’ and caesar('ZAP’, 2) = 'BCR’.

5.4 Debug with tables

If your program isn't giving the right output and you're not sure why, try run-
ning the program “by hand.” That means you should create a table of values
for all the variables and then run the program yourself. An example is given in
Exercise 11.
If you still can't figure out the problem, try inserting print statements inside
your program, usually inside loops. Take the following example:
def dumb multiply(a,b):
"""Multiply positive integers a and b.”””
p=20
while b!=0:
p,b = p+b, b-1
return p

This program will not correctly compute the product of two numbers. (Try
it!) Not obvious why? Try doing it like this:
def dumb multiply(a,b):
"""Multiply positive integers a and b.”””
p=20
while b!=0:
p,b = p+b, b-1
print a,b,p # This shows us what the program is doing
return p

10 of 12

Math 424 Python tutorial
Fall 2024

Then you'll see the values of the variables as the program iterates, and hopefully
understand the problem.

Exercise 9. Write a program gcd that computes the ged of two numbers. Hint:
you will need two variables, rold, rnew. (Though you need not use those
names!) Check that gcd(128478,197351) = 7.

Exercise 10. Write a program egcd that computes the Extended Euclidean al-
gorithm; that is, egcd(a,b) = [d, s, t] where d = gcd(a,b) and sa +
tb = d. Check that egcd(128478,197351) = (7, 7900, -5143) (ﬂnougfl
your answer might be different from mine; if it is, check yourself that the
last two numbers are correct.) Hint: I recommend having 6 variables in
your program:

rold, rnew, sold, snew, told, tnew

(of course, you can give these different names). It can also be convenient
to include a variable for q.

6 Rules for turning in programs

When turning in programs,

e do not use any external libraries—that is, anything with the import com-
mand;

e upload your python file (which should have a .py extension) to Grade-
scope;

e make sure code runs without errors, returns the correct results, and passes
and assigned test;

e make sure all programs have doc strings;
e use previously written code where appropriate; and

e when required, include a proof that the code is correct with your written
homework.

When you use previously written programs, clearly state what those programs
do; specifically, the input and output of the programs. (You can include the
code for earlier programs, but it isn’t required.) Of course, that means that you
should save your previous code, as it will be useful throughout the course.

I will demonstrate some proofs in class that various programs are correct.
As for most math problems, there is no one-size-fits-all way to prove a program
works, but there are general techniques. For example, induction is a fantastic
tool for correctness proofs. Below is an example problem, based on the follow-
ing code.

11 of 12

Math 424
Fall 2024

Python tutorial

def sod(x):

s=0

while x > 0:
$=5+(Xx%10)
x=x//10

return s

Exercise 11. Determine what the above program does without a computer, as
follows.

(a)

(b)

(d)
(e)

The values of x, s vary throughout the program. Given that we eval-
uate sod(54132), construct a table with the values of x and s, where
each row corresponds to the values as the program iterates.

Since there is a while, it is not obvious that the program terminates—
that is, that the program does not go into an infinite loop. Prove
that, for any positive integer input x, the program does eventually
terminate.

Let xn, sn be the values of x,s after n iterations of the loop. For
example, so = 0. Determine what x,, and s, are. (Normally, you
would prove the claim by induction, but you do not have to do this
here.)

Using the previous parts, state what the program does, and prove
your claim.

What does sod stand for?

7 Further reading

This document is only meant to get you started. I encourage you to look online
for more details on programming in Python! I'd especially suggest looking into
lists (particularly list comprehension), printing, and the dictionary data type.

For many people, programming isn't really programming until you can make
windows with buttons, drop-down menus, and other assorted widgets. That
kind of programming, called GUI programming, is not necessary for this course,
but if you're interested, the TKinter library is a good place to start.

8 Homework

As part of your homework due Friday, please turn in Exercises 3-10. For pro-
grams where sample outputs are given, please include those tests in your file
(so for instance, gcd(128478,197351) == 7).

12 of 12

	Getting started
	Basics of programming
	Putting the parts together

	Basics of Python
	Arithmetic
	Data
	Booleans
	Control flow

	Functions and syntax
	Writing down the algorithm
	Typing up the program

	Good practices
	Start on paper
	Write doc strings and comments
	Use many smaller programs
	Debug with tables

	Rules for turning in programs
	Further reading
	Homework

