HW 7 Due: Friday, November 1

§3.13/21, 33, 56b, 58, 61; §3.14/12, 14

Also, implement the algorithm of 56b as a program $\exp(\mathbf{y}, \mathbf{x}, \mathbf{n})$. Check that it works by evaluating expmod(13, 56728, 28139).

Hint for 56b: let x_k be the number with binary expansion $b_{w-k+1}b_{w-k+2} \dots b_w$. Show that after k iterations of the loop, $b \equiv y^{x_k} \pmod{n}$ and $x = x_k$.

3.13.56b Here's the code:

```
def expmod(y, x, n):
" " " " <i>Compute</i> y <math>\hat{x}</math> mod n. " " "a, b, c = x, 1, y
while a := 0:
     if a\sqrt[6]{2} == 0:
           a, c = a//2, (c*c)%nelse :
           a, b = a-1, (b*c)\%nreturn b
```
Notice that at each iteration, α is getting smaller, so eventually $\alpha = 0$. Thus the algorithm eventually terminates.

For the proof, first observe that if the value of a is odd, then in the loop the new value of a is even (a=a-1). Thus we could rewrite the code as follows:

```
def expmod(y, x, n):
" " " " <i>Compute</i> y <math>\hat{x}</math> mod n. " " "a, b, c = x, 1, y
while a := 0:
      if a\sqrt[6]{2} != 0:
           b = (b * c) \% na, c = a//2, (c*c)%nreturn b
```
With this new code, let a_k , d_k , c_k be the values of a , b , c after k iterations. (I use d_k instead of b_k since b_k is already taken in the binary expansion of x.) Clearly $c_k = y^{2^k} \pmod{n}$. Since taking the quotient on division by 2 is the same as dropping the last bit, we have that a_k has binary expansion

 $b_1b_2 \ldots b_{w-k}$.

Finally, I will show by induction that $d_k \equiv y^{(b_{w-k+1}...b_w)_2} \pmod{\mathfrak{n}}$. When $k = 0$, the exponent is 0, and indeed $d_0 = 1$. Thus the base case holds.

Suppose $d_k \equiv y^{(b_{w-k+1}...b_w)_2} \pmod{n}$. On the k + 1st iteration, there are 2 cases: either $b_{w-k} = 0$ or 1. If $b_{w-k} = 1$, since $a_k = (b_1b_2...b_{w-k})$, then a_k is odd. Thus

 $d_{k+1} = d_k \cdot c_{k-1} \equiv y^{(b_{w-k+1}...b_w)_2} \cdot y^{2^{k-1}} \pmod{n} = y^{(1b_{w-k+1}...b_w)_2}.$

Since $b_{w-k} = 1$, the inductive claim follows. If $b_{w-k} = 0$, then

$$
d_{k+1} = d_k \equiv y^{(b_{w-k+1}...b_w)_2} \pmod{\pi} = y^{(0b_{w-k+1}...b_w)_2},
$$

and the claim follows again.

Finally, the output occurs when $a_k = 0$; by our formula for a_k , this occurs when $k = w$. From our formula for d_k , the algorithm is correct.

3.13.58 For (a), there are at most 4 square roots of x , so she expects to get m on average after 4 iterations.

For (b), there is no efficient method for Oscar to compute *any* square roots without knowing p and q.

For (c), Eve enters 1 several times. Note that both 1 and $-1 \equiv n-1$ are square roots of 1, but there are 2 others. Eve inputs 1 until she gets one of the *other* square roots of 1; say she obtains $m \not\equiv \pm 1 \pmod{n}$. Then she computes $gcd(m - 1, n)$ to get one of the prime factors.

The reason this works is as follows. By Sun Tzu's Theorem, $m^2 \equiv 1$ (mod p) and $m^2 \equiv 1 \pmod{q}$, but we cannot have

 $m \equiv 1 \pmod{p}$, $m \equiv 1 \pmod{q}$,

for in this case we would have $m \equiv 1 \pmod{n}$. Similarly, we cannot have

 $m \equiv -1 \pmod{p}$, $m \equiv -1 \pmod{q}$.

Therefore she has obtained

 $m \equiv 1 \pmod{p}$, $m \equiv -1 \pmod{q}$

or vice versa; without loss of generality she gets the above. Then $p \mid (m-1)$ while q $\{ (m-1)$, and hence gcd $(m-1, n) = p$, enabling her to factor n.

3.14.12 As 34807 is a prime $\equiv 3 \pmod{4}$ we may use the proposition in §3.9. We have $(34807 + 1)/4 = 8702$, and using our Python code,

expmod (26055 ,8702 ,34807)

yields 33573. We have to check that this works with

expmod (33573 ,2 ,34807)

which indeed equals 26055.