
Math 424 Fall 2024

HW 7
Due: Friday, November 1

§3.13/21, 33, 56b, 58, 61; §3.14/12, 14
Also, implement the algorithm of 56b as a program expmod(y, x, n). Check

that it works by evaluating expmod(13, 56728, 28139).
Hint for 56b: let xk be the number with binary expansion bw−k+1bw−k+2 . . . bw.

Show that after k iterations of the loop, b ≡ yxk (mod n) and x = xk.

3.13.56b Here’s the code:

def expmod(y, x, n):
""" Compute y^x mod n."""
a, b, c = x, 1, y
while a != 0:

if a%2 == 0:
a, c = a//2, (c*c)%n

else:
a, b = a-1, (b*c)%n

return b

Notice that at each iteration, a is getting smaller, so eventually a = 0. Thus
the algorithm eventually terminates.

For the proof, first observe that if the value of a is odd, then in the loop the
new value of a is even (a=a-1). Thus we could rewrite the code as follows:

def expmod(y, x, n):
""" Compute y^x mod n."""
a, b, c = x, 1, y
while a != 0:

if a%2 != 0:
b = (b*c)%n

a, c = a//2, (c*c)%n
return b

With this new code, let ak,dk, ck be the values of a,b, c after k iterations. (I
use dk instead of bk since bk is already taken in the binary expansion of x.)
Clearly ck = y2

k
(mod n). Since taking the quotient on division by 2 is the

same as dropping the last bit, we have that ak has binary expansion

b1b2 . . . bw−k.

Finally, I will show by induction that dk ≡ y(bw−k+1...bw)2 (mod n). When
k = 0, the exponent is 0, and indeed d0 = 1. Thus the base case holds.

Suppose dk ≡ y(bw−k+1...bw)2 (mod n). On the k+ 1st iteration, there are 2
cases: either bw−k = 0 or 1. If bw−k = 1, since ak = (b1b2 . . . bw−k), then

1 of 2



Math 424
Fall 2024

HW 7
Due: Friday, November 1

ak is odd. Thus

dk+1 = dk · ck−1 ≡ y(bw−k+1...bw)2 · y2k−1
(mod n) = y(1bw−k+1...bw)2 .

Since bw−k = 1, the inductive claim follows. If bw−k = 0, then

dk+1 = dk ≡ y(bw−k+1...bw)2 (mod )n = y(0bw−k+1...bw)2 ,

and the claim follows again.

Finally, the output occurs when ak = 0; by our formula for ak, this occurs
when k = w. From our formula for dk, the algorithm is correct.

3.13.58 For (a), there are at most 4 square roots of x, so she expects to get m on
average after 4 iterations.

For (b), there is no efficient method for Oscar to compute any square roots
without knowing p and q.

For (c), Eve enters 1 several times. Note that both 1 and −1 ≡ n − 1 are
square roots of 1, but there are 2 others. Eve inputs 1 until she gets one
of the other square roots of 1; say she obtains m ̸≡ ±1 (mod n). Then she
computes gcd(m− 1,n) to get one of the prime factors.

The reason this works is as follows. By Sun Tzu’s Theorem, m2 ≡ 1
(mod p) and m2 ≡ 1 (mod q), but we cannot have

m ≡ 1 (mod p),m ≡ 1 (mod q),

for in this case we would have m ≡ 1 (mod n). Similarly, we cannot have

m ≡ −1 (mod p),m ≡ −1 (mod q).

Therefore she has obtained

m ≡ 1 (mod p),m ≡ −1 (mod q)

or vice versa; without loss of generality she gets the above. Then p | (m− 1)
while q ∤ (m− 1), and hence gcd(m− 1,n) = p, enabling her to factor n.

3.14.12 As 34807 is a prime ≡ 3 (mod 4) we may use the proposition in §3.9. We
have (34807+ 1)/4 = 8702, and using our Python code,

expmod (26055 ,8702 ,34807)

yields 33573. We have to check that this works with

expmod (33573 ,2 ,34807)

which indeed equals 26055.

2 of 2


