Name:

Math 424: Practice exam

This practice exam is not meant to be comprehensive. Rather, it is meant to complement the prior exams and the textbook problems.

- 1. Compute $\varphi(667)$.
- 2. Solve $25x \equiv 1 \pmod{667}$ for x. Find the smallest nonnegative solution.
- 3. Suppose p_1, p_2, p_3, p_4, p_5 are 5 distinct odd primes. Consider the 5-bit hash h whose domain is $\{n \in \mathbb{Z} : p_i \nmid n \forall i\}$, given by

$$h(n) = \left(\frac{1}{2}\left(\frac{n}{p_1}\right) + 1, \dots, \frac{1}{2}\left(\frac{n}{p_5}\right) + 1\right),$$

where $\left(\frac{n}{p_i}\right)$ denotes the Legendre symbol.

- (a) Show that h is not strongly collision resistant.
- (b) Suppose each p_i is $\equiv 5 \pmod{8}$. Construct an algorithm which, given $y \in \{0, 1\}^5$, finds *n* such that h(n) = y. You can write it in Python, or just describe each step in words. Make sure each step is a calculation we know how to do. Explain why it works.
- 4. The hash function H outputs 3-bit hashes as follows:
 - 1. Given a bit string, append zeroes to the bit string until the length of the string is a multiple of 3. (If the length was a multiple of 3 to begin with, do nothing.)
 - 2. Break the bit string into groups of length 3.
 - 3. Take the XOR sum of all of the groups.
 - 4. The sum is the value of the hash function.
 - (a) Show that H is not collision-resistant.
 - (b) Show that H is not preimage resistant.
- 5. The hash function h produces 128-bit hashes.
 - (a) Eve has a file X and knows the hash h(X). She wishes to find a *different* file Y with the same hash value. How many different files does she have to try before finding one with the same hash as X, with probability $\geq 50\%$?
 - (b) Suppose instead Eve wants to find any two files Y and Z which are different, but have the same hash value. How many files does she need to check to succeed with probability $\geq 50\%$? You may give an approximate value.
- 6. Alice is using RSA signatures. The verification key is (551, 101).
 - (a) Find a message whose signature is 550.
 - (b) Compute the signature of m = 4.
- 7. In a (3,5) Shamir secret sharing scheme, we have p = 11, and 3 of the shares are

What is the secret?