MATH 350 Assignment 6 Solutions

Dylan Scofield

Fall 2024

4.16

Proof. Let a and b be two integers of the same parity. We wish to show $a + b$ is even. Let us approach this with cases. **Case 1:** *a* and *b* are both even.

Thus by definition of even $a = 2j$ and $b = 2k$ for some $j, k \in \mathbb{Z}$. Observe

$$
a + b = 2j + 2k
$$

$$
= 2(j + k).
$$

Since $(j + k) = h$ is an integer, $(a + b) = 2h$ is even by definition. Case 2: a and b are both odd.

Thus by definition of odd $a = 2m + 1$ and $b = 2\ell + 1$ for some $m, \ell \in \mathbb{Z}$. Observe

$$
a + b = (2m + 1) + (2\ell + 1)
$$

= 2m + 2\ell + 2
= 2(m + \ell + 1).

Notice that $(m + \ell + 1) = p$ is an integer, thus $(a + b) = 2p$. Therefore, $(a + b)$ is even by definition.

 \Box

4.26

Proof. We want to show that every odd integer is the difference between two squares.

Let x be an arbitrary odd integer, so $x = 2k + 1$ where $k \in \mathbb{Z}$. Consider $a = k^2$ and $b = (k+1)^2$. Note that these are both perfect squares. Observe

$$
(k+1)^2 - k^2 = k^2 + 2k + 1 - k^2
$$

= 2k + 1
= x.

Thus every odd integer can be expressed as a difference of perfect squares. \Box

5.11

Proof. We will prove this by showing the contrapositive. Suppose x is odd and y is even. We will show that $x^2(y+3)$ is odd. Thus by definition of odd and even respectively, $x = 2k + 1$ and $y = 2j$ for some $j, k \in \mathbb{Z}$. Observe

$$
x^{2}(y+3) = (2k+1)^{2}((2j) + 3)
$$

= $(4k^{2} + 4k + 1)(2j + 3)$
= $(8jk^{2} + 12k^{2} + 8jk + 12k + 2j + 3)$
= $(8jk^{2} + 12k^{2} + 8jk + 12k + 2j + 2 + 1)$
= $2(4jk^{2} + 6k^{2} + 4jk + 6k + j + 1) + 1$

If we let $\ell = 4jk^2 + 6k^2 + 4jk + 6k + j + 1$, and note that $\ell \in \mathbb{Z}$, we see that $x^2(y+3) = 2\ell + 1$. Thus $x^2(y+3)$ is odd by definition.

Thus the contapositive of the statementis true and we conclude that our original statement holds. \Box

5.15

Proof. Suppose $x \in \mathbb{Z}$, and that $x^3 - 1$ is even. We want to show that x is odd. We will prove this by instead proving the contrapositive.

Thus let us assume that x is even and we will demonstrate the $x^3 - 1$ is odd. By definition of even, $x = 2k$ for $k \in \mathbb{Z}$. Observe

$$
x3 - 1 = (2k)3 - 1
$$

= 8k³ - 1
= 2(4k³) - 1
= 2(4k³) - 2 + 1
= 2(4k³ - 1) + 1.

Notice that $4k^3 - 1$ is an integer. Let $j = 4k^3 - 1$. Thus, $x^3 - 1 = 2j + 1$ is odd by definition.

.

Therefore, the contrapositive is true and we can conclude that the original statement is also true. \Box

5.19

Proof. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. Suppose $a \equiv b \mod n$ and $a \equiv c \mod n$. We wish to show that $c \equiv b \mod n$. By definition of congruence modulo n ,

$$
n \mid (a - b)
$$
 and $n \mid (a - c)$.

Then we can apply the definition of divides to see that for some $j, k \in \mathbb{Z}$

$$
nj = (a - b) \text{ and } nk = (a - c).
$$

Subtraction yields

$$
nj + b = a
$$
 and $nk + c = a$.

Thus $nj + b = nk + c$. Observe

$$
nj - nk = c - b.
$$

Therefore, $n(j - k) = (c - b)$, where $(j - k) = \ell$ is an integer. From this we see that $n\ell = (c - b)$, and by definition of divides we get

 $n \mid (c - b).$

Applying the definition of congruence modulo n allows us to conclude that

$$
c \equiv b \mod n
$$

as desired.

 \Box