MATH 350 Assignment 5 Solutions

Dylan Scofield

Fall 2024

4.2

Proof. Suppose x is an odd integer. We will show that x^3 is also odd. By definition of odd, x = 2k + 1 for some $k \in \mathbb{Z}$. Thus, $x^3 = (2k + 1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1$. So $x^3 = 2b + 1$ where b is the integer $4k^3 + 6k^2 + 3k$. Thus $x^3 = 2b + 1$ for an integer b. Therefore, x^3 is odd, by definition of odd.

4.4

Proof. Suppose $x, y \in \mathbb{Z}$, and that x and y are odd. We will show xy is odd. By definition of odd, x = 2k + 1 and y = 2j + 1 for some integers j and k. Thus, xy = (2k + 1)(2j + 1) = 4kj + 2k + 2j + 1 = 2(2kj + k + j) + 1. So, xy = 2b + 1 where b is the integer 2kj + j + k. Thus, xy = 2b + 1 for some integer b. Therefore, xy is odd by definition.

4.5

Proof. Suppose $x, y \in \mathbb{Z}$, and that x is even. We will show that xy is even. By definition of even, x = 2k for some $k \in \mathbb{Z}$. Thus, xy = (2k)y = 2(ky). So, xy = 2b for the integer b = ky. Thus, xy = 2b for an integer b. Therefore, xy is even, by definition of even.

4.6

Proof. Suppose $a, b, c \in \mathbb{Z}$. Also assume that $a \mid b$ and $a \mid c$. It will be shown that $a \mid (b + c)$. By definition of divides, b = aj and c = ak for some $j, k \in \mathbb{Z}$. Observe, b + c = aj + ak = a(j + k). So, b + c = az for the integer z = j + k. Therefore, $a \mid (b + c)$ by definition