MATH 350 Assignment 3 Solutions

Dylan Scofield

Fall 2024

2.5.9

2.5.10

In order to do this problem without the use of a massive truth table consider what each side of the conditional statement must be to make it false.

 $T \Rightarrow U$ is false when T is true and U if false.

Thus we see that two conditions must be satisfied:

 $(P \wedge Q) \vee R$ must be true, and $R \vee S$ must be false.

For $R \vee S$ to be false both R and S must be false. Since we know R to be false, and $(P \wedge Q) \vee R$ is true, we conclude that $(P \wedge Q)$ is true. Therefore, both P and Q must be true.

2.6.10

We will see if these statements are equivalent by using logic.

$$
(P \Rightarrow Q) \lor R = (\sim P \lor Q) \lor R.
$$

as $(P \Rightarrow Q)$ and $(\neg P \lor Q)$ are equivalent. Now let us see the left-hand side.

$$
\sim ((P \land \sim Q) \land \sim R) = \sim (P \land \sim Q) \lor R)
$$
 (DeMorgan's Law)
= ($\sim P \lor Q$) $\lor R$. (DeMorgan's Law)

Observe that both statements are equivalent.

2.7.2

Here are two common ways mathematicians would interpret this statement.

 $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \geq 0.$

"For all x in $\mathbb R$, there exists an n in $\mathbb N$ such that x^n is greater than or equal to 0."

"For every real number x , there is a natural number n where x^n is greater than or equal to 0."

This statement is true. If $x \geq 0$ we can choose any n. If $x < 0$, we choose any even $n \in \mathbb{N}$.

2.7.8

There is no one way to translate this into English, but here are two common ways mathematicians would interpret this statement. $\forall n \in \mathbb{Z}, \exists X \subseteq \mathbb{N}, |X| = n.$ "For all *n* in \mathbb{Z} , there is a subset X of N such that $|X| = n$." "For every integer n , there exists a subset X of the natural numbers where the

cardinality of X is n ."

This statement is false. Consider $n < 0$.

2.9.5

English:

For every positive number, ϵ there is a positive number δ for which $|x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$.

Symbolic:

$$
\forall \epsilon \in \mathbb{R}, \epsilon > 0, \exists \delta \in \mathbb{R}, \delta > 0, \text{ such that } |x - a| < \delta \implies |f(x) - f(a)| < \epsilon.
$$

or

$$
\forall \epsilon \in \mathbb{R}^{>0}, \exists \delta \in \mathbb{R}^{>0}, \text{ such that } |x - a| < \delta \implies |f(x) - f(a)| < \epsilon.
$$

2.10.4

One can translate this to symbolic notation first in order to negate.

$$
\sim (\forall \epsilon \in \mathbb{R}^{>0}, \exists \delta \in \mathbb{R}^{>0}, \text{ s.t. } \forall x, a \in \mathbb{R}, |x - a| < \delta \implies |f(x) - f(a)| < \epsilon) \equiv
$$
\n
$$
\exists \epsilon \in \mathbb{R}^{>0} \text{ s.t. } \forall \delta \in \mathbb{R}^{>0}, \exists x, a \in \mathbb{R}, \sim (|x - a| < \delta \implies |f(x) - f(a)| < \epsilon) \equiv
$$
\n
$$
\exists \epsilon \in \mathbb{R}^{>0}, \text{ s.t. } \forall \delta \in \mathbb{R}^{>0}, \exists x, a \in \mathbb{R}, |x - a| < \delta \land \sim (|f(x) - f(a)| < \epsilon) \equiv
$$
\n
$$
\exists \epsilon \in \mathbb{R}^{>0}, \text{ s.t. } \forall \delta \in \mathbb{R}^{>0}, \exists x, a \in \mathbb{R}, |x - a| < \delta \land |f(x) - f(a)| \geq \epsilon.
$$

In English this reads: "There exists a positive number ϵ such that for every positive δ , $|x - a| < \delta$ and $|f(x) - f(a)| \ge \epsilon$."

2.10.6

Again, let us translate this to symbolic logic notation.

 $\sim (\exists a \in \mathbb{R}, \text{ such that } \forall x \in \mathbb{R}, a + x = x) \equiv$ $\forall a \in \mathbb{R}, \exists x \in \mathbb{R}, \text{ such that } \sim (a + x = x) \equiv$ $\forall a \in \mathbb{R}, \exists x \in \mathbb{R}, \text{ such that } a + x \neq x.$

In English we read this as: "For every real number a there is a real number x such that the sum of x and a does not equal x ."