MATH 350 Assignment 3 Solutions

Dylan Scofield

Fall 2024

2.5.9

	P	Q	$\sim P$	$\sim Q$	$\sim P \lor \sim Q$	$\sim (\sim P \lor \sim Q)$
Í	T	T	F	F	F	Т
	T	F	F	T	T	F
	F	T	F T T	F	T	F
	F	F	T	T	T	F

2.5.10

In order to do this problem without the use of a massive truth table consider what each side of the conditional statement must be to make it false.

 $T \Rightarrow U$ is false when T is true and U if false.

Thus we see that two conditions must be satisfied:

 $(P \land Q) \lor R$ must be true, and $R \lor S$ must be false.

For $R \vee S$ to be false both R and S must be false. Since we know R to be false, and $(P \wedge Q) \vee R$ is true, we conclude that $(P \wedge Q)$ is true. Therefore, both P and Q must be true.

2.6.10

We will see if these statements are equivalent by using logic.

$$(P \Rightarrow Q) \lor R = (\sim P \lor Q) \lor R.$$

as $(P \Rightarrow Q)$ and $(\neg P \lor Q)$ are equivalent. Now let us see the left-hand side.

$$\begin{split} \sim ((P \wedge \sim Q) \wedge \sim R) &=\sim (P \wedge \sim Q) \vee R) & (\text{DeMorgan's Law}) \\ &= (\sim P \vee Q) \vee R. & (\text{DeMorgan's Law}) \end{split}$$

Observe that both statements are equivalent.

2.7.2

Here are two common ways mathematicians would interpret this statement.

 $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \ge 0.$

"For all x in \mathbb{R} , there exists an n in \mathbb{N} such that x^n is greater than or equal to 0."

"For every real number x, there is a natural number n where x^n is greater than or equal to 0."

This statement is true. If $x \ge 0$ we can choose any n. If x < 0, we choose any even $n \in \mathbb{N}$.

2.7.8

There is no one way to translate this into English, but here are two common ways mathematicians would interpret this statement. $\forall n \in \mathbb{Z}, \exists X \subseteq \mathbb{N}, |X| = n.$ "For all n in Z, there is a subset X of N such that |X| = n." "For every integer n, there exists a subset X of the natural numbers where the cardinality of X is n."

This statement is false. Consider n < 0.

2.9.5

English:

For every positive number, ϵ there is a positive number δ for which $|x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$.

Symbolic:

$$\begin{aligned} \forall \epsilon \in \mathbb{R}, \epsilon > 0, \exists \delta \in \mathbb{R}, \delta > 0, \text{ such that } |x - a| < \delta \implies |f(x) - f(a)| < \epsilon. \\ \text{or} \\ \forall \epsilon \in \mathbb{R}^{>0}, \exists \delta \in \mathbb{R}^{>0}, \text{ such that } |x - a| < \delta \implies |f(x) - f(a)| < \epsilon. \end{aligned}$$

2.10.4

One can translate this to symbolic notation first in order to negate.

$$\begin{array}{l} \sim (\forall \epsilon \in \mathbb{R}^{>0}, \exists \delta \in \mathbb{R}^{>0}, \text{ s.t. } \forall x, a \in \mathbb{R}, |x-a| < \delta \implies |f(x) - f(a)| < \epsilon) \equiv \\ \exists \epsilon \in \mathbb{R}^{>0} \text{ s.t. }, \forall \delta \in \mathbb{R}^{>0}, \exists x, a \in \mathbb{R}, \sim (|x-a| < \delta \implies |f(x) - f(a)| < \epsilon) \equiv \\ \exists \epsilon \in \mathbb{R}^{>0}, \text{ s.t. } \forall \delta \in \mathbb{R}^{>0}, \exists x, a \in \mathbb{R}, |x-a| < \delta \wedge \sim (|f(x) - f(a)| < \epsilon) \equiv \\ \exists \epsilon \in \mathbb{R}^{>0}, \text{ s.t. } \forall \delta \in \mathbb{R}^{>0}, \exists x, a \in \mathbb{R}, |x-a| < \delta \wedge |f(x) - f(a)| < \epsilon. \end{array}$$

In English this reads: "There exists a positive number ϵ such that for every positive δ , $|x - a| < \delta$ and $|f(x) - f(a)| \ge \epsilon$."

2.10.6

Again, let us translate this to symbolic logic notation.

 $\begin{array}{l} \sim (\exists a \in \mathbb{R}, \text{ such that } \forall x \in \mathbb{R}, a+x=x) \equiv \\ \forall a \in \mathbb{R}, \exists x \in \mathbb{R}, \text{ such that } \sim (a+x=x) \equiv \\ \forall a \in \mathbb{R}, \exists x \in \mathbb{R}, \text{ such that } a+x \neq x. \end{array}$

In English we read this as: "For every real number a there is a real number x such that the sum of x and a does not equal x."