Homework 7 selected solutions Due: Friday, October 31

7.5.2 We have

$$\begin{aligned} \alpha_0 &= \langle 1, f \rangle \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f \, dx \\ &= \frac{1}{4} \end{aligned}$$

since the region under the curve is a rectangle with area $\frac{\pi}{2}.$ Next, for $n\geq 1$ we have

$$\begin{aligned} \alpha_n &= \left\langle \cos nx, f \right\rangle / (1/2) \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx \\ &= \frac{1}{\pi} \int_{0}^{\pi/2} \cos nx \, dx \\ &= \frac{1}{n\pi} \sin nx \bigg]_{0}^{\pi/2}. \end{aligned}$$

The lower bound evaluates to 0. When we plug the upper bound into $\sin nx$, we get 0 when n is even, +1 when n is one more than a multiple of 4, and -1 when n is 3 more than a multiple of 4. The most compact way of writing this is that $a_n = 0$ when n is even, otherwise setting n = 2k - 1, we get

$$a_{2k-1} = \frac{(-1)^{k+1}}{(2k-1)\pi}.$$

For the bs, we get

$$\begin{split} b_m &= \langle \sin mx, f \rangle \, (1/2) \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx \, dx \\ &= \frac{1}{\pi} \int_{0}^{\pi/2} \sin mx \, dx \\ &= -\frac{1}{m\pi} \cos mx \bigg|_{0}^{\pi/2}. \end{split}$$

The lower bound evaluates to $-\frac{1}{m\pi}$ (which we will subtract from the value when we plug in the upper bound). The upper bound, when plugged into $\cos mx$, yields 0 when m is odd, +1 when m is a multiple

of 4, and -1 when m is 2 more than a multiple of 4. Putting this all together, we get that

$$b_m = \begin{cases} \frac{1}{m\pi} & \text{when m is odd} \\ 0 & \text{when m is a multiple of 4} \\ \frac{2}{m\pi} & \text{when m is 2 more than a multiple of 4.} \end{cases}$$

One way of writing this is

$$\begin{split} F(f) &= \frac{1}{4} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2k-1} \cos(2k-1)x + \frac{1}{\pi} \sum_{\ell=1}^{\infty} \frac{1}{2\ell-1} \sin(2\ell-1)x \\ &\quad + \frac{1}{\pi} \sum_{j=1}^{\infty} \frac{1}{4j-2} \sin(4j-2)x. \end{split}$$

7.5.3 Write f_n for the function in problem n. Note that $f_3(x) = s(x) - f_2(x)$. Subtracting Fourier series, we see that the 1/4 terms cancel, as do all of the sin mx terms with odd m all cancel. The cosine terms and the sin mx terms with m of the form 4k-2 collect; up to sign, the coefficients double. When we simplify, we obtain

$$-\frac{2}{\pi}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{2k-1}\cos[(2k-1)x]-\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{1}{4k-2}\sin[(4k-2)x].$$

7.5.6 Notice this is looks like the square wave, but with twice the frequency. This means that f(x) = s(2x). Therefore

$$F(f) = F(s)(2x)$$

$$= \frac{1}{2} - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{2k-1} \sin(4k-2)x.$$