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7 Fourier Analysis

7.1 Introduction

The purpose of this section is to decompose a complex signal into its constituent
frequencies. To make this more concrete, consider the following examples:

• A physicist places a prism in a light beam, and the beam splits into the
rainbow of colors.

• An astronomer observes the light from a distant star. They analyze the
specific “colors” in the light (many of which are not visible to the eye)
and deduces the chemical composition of the star.

• An engineer sets up an oscilloscope that receives a complex signal. The
oscilloscope computes the frequency graph of the signal.

There are many others! The idea is the same in all cases. First, define a
simple signal to be anything that looks like a sine wave. Then given a more
complicated signal, we can rewrite it as a sum of simple signals. For instance,
the signal given by the graph

−4 −2 2 4

−2

2

looks complicated. But it turns out that it is the sum of the graphs given below:
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Fourier analysis gives us a method for accomplishing the decomposition
above.

The way our text explains Fourier analysis is uncharacteristically terrible.
This document aims to give the correct way of thinking about Fourier analysis.
It is by no means original to me; most textbooks handle Fourier analysis the
way I will describe.

7.2 Preliminaries

We use a linear algebraic framework. First, we want to work with functions
that repeat every 2π, such as sin x, cos x, sin 2x, cos 2x, etc.

Proposition 7.1. A function f is 2π-periodic exactly when f(x) = f(x+ 2π).

Notice that the equation means f(0) = f(0+ 2π) = f(2π) = f(4π) = · · · ,
and similarly for any other value we plug in. Alternatively, the graph of
y = f(x+ 2π) is the graph of y = f(x) translated 2π units to the left. If f(x) is
2π-periodic, the translation does not change the graph; hence f(x) = f(x+ 2π).

When working with a 2π-periodic function, the values of the function on
[−π,π] completely determine the function everywhere else. For instance, if f is
2π-periodic, then f(11π2 ) = f(3π2 ). Therefore instead of 2π-periodic functions
with domain all real numbers, we can look at functions with domain [−π,π].

We will silently identify 2π-periodic functions with functions having domain
[−π,π].
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Next, recall that L2[−π,π] means the vector space of functions with domain
the interval [−π,π], with inner product

⟨f,g⟩ = 1

2π

∫π
−π

fgdx.

Our main tool is the projection formula

projf(g) =
⟨f,g⟩
⟨f, f⟩ f.

So for example if f = x and g = 1+ 2x, then to compute projx(1+ 2x), we do

⟨x, 1+ 2x⟩ = 1

2π

∫π
−π

x(1+ 2x)dx

=
1

2π

∫π
−π

x+ 2x2 dx since x is real on [−π,π]

=
1

2π

[
1

2
x2 +

2

3
x3

]π
−π

=
2π2

3
,

⟨x, x⟩ = 1

2π

∫π
−π

xxdx

=
1

2π

[
1

3
x3

]π
−π

=
π2

3
,

projx(1+ 2x) =
⟨x, 1+ 2x⟩

⟨x, x⟩ x

=
2π2/3
π2/3

x

= 2x.

This is actually quite a natural answer! The reasons is that 1 and x are
orthogonal in L2[−π,π]:

⟨1, x⟩ = 1

2π

∫π
−π

xdx =
1

4π
x2

]π
−π

= 0.

Thus thinking of 1+ 2x = 1 · 1+ 2 · x, we expect the component of 1+ 2x along
x to be 2x. If we were to picture this, it would looks something like this:1

1Note that if we did the similar projx2 (1+ 2x2), we would not get 2x2. This is because 1 and
x2 are not orthogonal. Try it!
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1

x

1+ 2x
2x

More precisely, we recall the relationship between orthogonal bases and the
projection formula.

Theorem 7.2. Suppose −→v 1, . . . ,−→v n forms an orthogonal basis for a vector space V .
If −→v ∈ V , then

−→v = c1
−→v 1 + c2

−→v 2 + · · ·+ cn
−→v n

where
ci
−→v i = proj−→v i

−→v .

In particular, note that

ci =
⟨−→v i,

−→v ⟩
⟨−→v i,

−→v i⟩
.

Corollary 7.3. Suppose −→v 1, . . . ,−→v n forms an orthonormal basis for a vector space
V . If −→v ∈ V , then

−→v = c1
−→v 1 + c2

−→v 2 + · · ·+ cn
−→v n

where
ci = ⟨−→v i,

−→w⟩ .

Orthonormal means that in additional to orthogonal, ⟨−→v i,
−→v i⟩ = ∥−→v i∥2 =

1. Substituting into the theorem, we get the corollary.

7.3 Trigonometric Fourier series via projections

Theorem 7.4. In L2[−π,π], the list of functions

1, cos x, cos 2x, cos 3x, . . . , sin x, sin 2x, sin 3x, . . .

forms an orthogonal basis. Additionally,

∥1∥2 = 1, ∥ cosmx∥2 = ∥ sinnx∥2 =
1

2
.

The fact that the list is a basis means that given f ∈ L2[−π,π], we can write
a Fourier series for f,

F(f) = a0 · 1+ a1 cos x+ a2 cos 2x+ · · ·+ b1 sin x+ b2 sin 2x+ · · ·
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for some scalars an,bm. For the most part, we’ll have F(f) = f (with notable
exceptions to be discussed later).

The fact that the list is orthogonal means that we can use Theorem 7.2 to
compute the an and bm using the projection formulas; namely

a0 =
⟨1, f⟩
⟨1, 1⟩ = ⟨1, f⟩

an =
⟨cosnx, f⟩

⟨cosnx, cosnx⟩ =
⟨cosnx, f⟩

1/2

bm =
⟨sinmx, f⟩

⟨sinmx, sinmx⟩ =
⟨sinmx, f⟩

1/2
.

Translating these into integrals, we get

a0 =
1

2π

∫π
−π

1 · fdx

an =

(
1

2π

∫π
−π

f cosndx
)

/(1/2)

bm =

(
1

2π

∫π
−π

f sinmdx
)

/(1/2)

Here’s a picture that’s meant to illustrate this situation:

cos x

sin x

f

a1 cos x

b1 sin x

In the picture, the arrows representing cos x and sin x are perpendicular, which
represents the fact that in L2[−π,π], cos x and sin x are orthogonal. The red
vectors stand in for the projections of f onto the trig functions:

a1 cos x = projcosx f and b1 sin x = projsinx f.

The two red vectors sum to give the blue vector.
Note that the black vectors are not unit vectors. Instead, they have length

1√
2

.
This is a 2-dimensional picture. What we actually want is an infinite dimen-

sional picture, with a black vector for each of 1, cos x, cos 2x, . . . , sin x, sin 2x, . . .,
each of them orthogonal to the others. But of course we can’t actually draw
that. However, the mathematics handles it just fine.
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We call F(f) the trigonometric Fourier series of f. We sometimes write Ftrig(f)
for this Fourier series, since in the next section we will introduce an exponential
Fourier series.

Finally, in summation notation we have

F(f) = a0 +

∞∑
n=1

an cosnx+
∞∑

m=1

bm sinmx. (1)

Frequency graphs. Especially in electrical engineering, the Fourier series
is often represented graphically. This graph has x-axis the frequency (the
“frequency domain”) and y-axis the amplitude. Typically only the sine is
considered. So in equation (1), we’d have a graph of the bm values. For
instance, if

F(f) = sin x+
1

2
sin 2x+

1

3
sin 3x+

1

4
sin 4x+ · · · ,

then we’d have a graph of the points (1, 1), (2, 12 ), (3, 13 ), etc., which would look
like this:

1 2 3 4 5

0.2

0.4

0.6

0.8

1

or maybe like this:
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The difference, as you can see, is how the graph gets filled in between the
m values (m = 1, 2, 3, . . .). In practice, oscilloscopes use the Fourier transform,
which we will cover at the end of the chapter. The Fourier transform allows us
to deal with fractional multiples of the fundamental frequency.

7.4 Exponential Fourier series via projections

Theorem 7.5. In L2[−π,π], the list of functions

. . . , e−2ix, e−ix, 1, eix, e2ix, . . .

forms an orthonormal basis.

Using the same reasoning as in the previous section, we see that any
function f ∈ L2[−π,π] has exponential Fourier series given by

F(f) = · · ·+ c−2e
−2ix + c−1e

−ix + c0 · 1+ c1e
ix + c2e

2ix + · · · .

The fact that the eikx are orthonormal means that

ck = ⟨eikx, f⟩ .

Thus

ck =
1

2π

∫π
−π

eikxfdx =
1

2π

∫π
−π

e−ikxfdx.

Note that the conjugate on the first function actually matters with exponential
Fourier series.

Our final series expansion could be written

F(f) =

∞∑
k=−∞ cke

ikx.
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7.5 Why do we do it this way?

Why this approach as opposed to the book’s? For many reasons:

• The linear algebra picture is really what’s going on!

• We can use properties of projections, which are not as easily available
with Boas’ methods. We talk about this in class in connection with
geometric transformations of functions.

• It’s easier to remember. Of course, you have to actually understand what’s
happening geometrically, which you should do, but then you have it.

• The approach generalizes. As mentioned on p. 357 of the textbook, the
material in chapters 12 and 13 also follow the same framework.
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