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Phosphofructokinase reaction network (part of glycolysis)

X : Fructose-1,6-biphosphate
Y : Fructose-6-phosphate
Z : Intermediate species (alternate form of
Fructose-1,6-biphosphate)
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Reference: K. Gatermann, M. Eiswirth, A. Sensse, Toric ideals
and graph theory to analyze Hopf bifurcations in mass action
systems. Journal of Symbolic Computation Vo1. 40, (2005),
pp. 1361–1382.
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Reaction Network + Mass-action kinetics yields

ẋ = k1x
2
y � k8x

3 + k3 � (k2 + k7)x + k6z

ẏ = �k1x2y + k8x
3 � k4y + k5

ż = k7x � k6z

Q. Does the phosphofructokinase reaction network admit
multiple steady states?
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Y � 2X

Stoichiometric subspace:
span {(2,�1), (�2, 1)} = {(x , y)|x + 2y = 0}

ẋ = 2k1y � 2k2x
2 = 0

ẏ = �k1y + k2x
2 = 0

y =
k2

k1
x

2 , x + 2y = c
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(G ) = 1

cap
pos

(G ) = 2 =) G is multistationary.

cap
nondeg

(G ) = 2 =) G is nondegenerately multistationary.

cap
exp�stab

(G ) = 1 =) G is not multistable.



Q. Does a given reaction network admit multiple positive

steady states?

Strategy: Examine “pieces” of network.



Example (It’s complicated!)

N1 : A! B , 3A+ B ! 4A

N2 : A+ B ! 0 , 3A! 4A+ B

Both N1 and N2 admit multiple steady states within their
respective stoichiometric compatibility classes. But

N1 [ N2 :

A! B , 3A+ B ! 4A

A+ B ! 0 , 3A! 4A+ B

N1 [ N2 does not admit multiple steady states.



Q. When do network components inform about the full

network?



Example (Fully Open Network G )

0
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Example (Fully Open Network G and Embedded (Fully Open)
Network N)

0
�! �A,B ,C ,D,E
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Let SG represent the stoichiometric subspace of G .

Theorem (J and Shiu, ’12)

1

If N is a subnetwork of G such that SN = SG then

cap
nondeg

(G ) � cap
nondeg

(N) and
cap

exp�stab

(G ) � cap
exp�stab

(N) (independent of kinetics).
2

Suppose N is obtained from G by removing some species and:

(a) SN is full-dimensional, and

(b) G contains both inflow and outflow reactions for any species

that is in G but not in N.

Then cap
nondeg

(G ) � cap
nondeg

(N) and
cap

exp�stab

(G ) � cap
exp�stab

(N).

Theorem (J and Shiu, ’12)

If N is a fully open embedded network of a fully open network G,

then cap
nondeg

(G ) � cap
nondeg

(N) and
cap

exp�stab

(G ) � cap
exp�stab

(N).



Example (Fully Open Network G and Embedded (Fully Open)
Network N)

0
�! �A,B ,C ,D,E

A+ C

�! � 2A

C + D

�! � A+ B

A+ C + E

�! � 2D + B

We know that the following network is nondegenerately
multistationary:

0 � A,B

A! 2A

0 A+ B



Kuratowski’s Theorem: Every nonplanar graph contains K3,3 or K5

as a graph minor.

These are “atoms of nonplanarity”



Nondegenerately multistationary fully open networks that are

embedding-minimal are atoms of multistationarity.



Towards a catalog of atoms of multistationarity.



Nondegenerately multistationary fully open networks that are
embedding-minimal are atoms of multistationarity.
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(Joint work with Shiu) Up to symmetry, the CFSTR atoms of
multistationarity that have only two non-flow reactions (irreversible
or reversible) and complexes that are at most bimolecular:

1 {0 ⌧ A, 0 ⌧ B , A! 2A, A+ B ! 0}
2 {0 ⌧ A, 0 ⌧ B , A! 2A, A ⌧ 2B}
3 {0 ⌧ A, 0 ⌧ B , 0 ⌧ C , A! 2A, A ⌧ B + C}
4 {0 ⌧ A, 0 ⌧ B , A! A+ B , 2B ! A}
5 {0 ⌧ A, 0 ⌧ B , A! A+ B , 2B ! 2A}
6 {0 ⌧ A, 0 ⌧ B , A! A+ B ! 2A}
7 {0 ⌧ A, 0 ⌧ B , A! A+ B , 2B ! A+ B}
8 {0 ⌧ A, 0 ⌧ B , B ! 2A! A+ B}
9 {0 ⌧ A, 0 ⌧ B , B ! 2A! 2B}
10 {0 ⌧ A, 0 ⌧ B , 0 ⌧ C , A! B + C ! 2A}
11 {0 ⌧ A, 0 ⌧ B , A+ B ! 2A, A! 2B}



Theorem (J ’13)

Let a1, a2, . . . , an, b1, b2, . . . , bn � 0. The (general) fully open

network with one reversible non-flow reaction and n species:

0 ⌧ X1 0 ⌧ X2 · · · 0 ⌧ Xn

a1X1 + . . . anXn ⌧ b1X1 + . . . bnXn

is multistationary if and only if

max

8
<

:
X

i :bi>ai

ai ,
X

i :ai>bi

bi

9
=

; > 1

1

1
Formulated at MBI summer program



Two families of atoms containing one non-flow reaction

1

0$ A

mA! nA n > m > 1

2

0$ A

0$ B

A+ B ! mA+ nB n > 1 , m > 1



Two families of atoms containing one non-flow reaction

1

0$ A

mA! nA n > m > 1

2

0$ A

0$ B

A+ B ! mA+ nB n > 1 , m > 1

Infinitely many atoms!

No one-reaction at-most-bimolecular atoms.



Q. Are there finitely many or infinitely many

at-most-bimolecular atoms?



Sequestration Network

X1 ! mXn

X1 + X2 ! 0

...

Xn�1 + Xn ! 0

(where n � 2,m � 1)



Theorem (J & Shiu ’15)

The fully open extension

e
Km,n of the sequestration network

Km,n is multistationary if and only if m > 1 and n > 1 is odd.

No fully open network that is an embedded network of

e
Km,n

(besides

e
Km,n itself) is multistationary.

e
Km,n for m > 1 and odd n is a candidate for being fully open
atom of multistationarity.

Future work: Nondegeneracy 2 of steady states.

2K2,3 is nondegenerate and therefore an atom of multistationarity (Bryan

Félix, Anne Shiu, Zev Woodstock (2015) )



Phosphofructokinase reaction network (part of glycolysis)
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Step 1. Remove reaction

System with and without Z are steady-state equivalent (up to
projection):
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Resulting network is fully open.



Step 2. Remove reaction
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Step 3. Remove species

Delete species Y :

2X ��+Y

k1�! 3X
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Step 4.

Resulting network is the smallest atom of multistationarity

2X
k1�! 3X

0
k3
�
k2

X

0 = ẋ = k3 � k2x + k1x
2

for k22 > 4k1k3 has two positive steady states:

x

± = k2 ±
q

k

2
2 � 4k1k3



Lifting steady states to the full system

For ✏ > 0, there exist k4 and k5 su�ciently large, and k8

su�ciently small such that the fixed points of the full system are
within an ✏-ball of

(X ⇤,Y ⇤,Z ⇤) =
✓

1

2k1
(k2 +

q
k

2
2 � 4k1k3), 1,

k7

2k1k6
(k2 +

q
k

2
2 � 4k1k3)

◆

(X ⇤⇤,Y ⇤⇤,Z ⇤⇤) =
✓
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2k1
(k2 �

q
k

2
2 � 4k1k3), 1,

k7

2k1k6
(k2 �

q
k

2
2 � 4k1k3)

◆



Summary

Network embedding provides a tool for lifting nondegenerate
multistationarity from smaller embedded networks.

Need a catalog of atoms of multistationarity. Moving in that
direction.



Thank you!


