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Phosphofructokinase reaction network (part of glycolysis)

X: Fructose-1,6-biphosphate

Y: Fructose-6-phosphate

Z: Intermediate species (alternate form of
Fructose-1,6-biphosphate)

k
2X + Y = 3X

ks
kq k3 k7
Y202 X227
ks ko ke

Reference: K. Gatermann, M. Eiswirth, A. Sensse, Toric ideals
and graph theory to analyze Hopf bifurcations in mass action
systems. Journal of Symbolic Computation Vol. 40, (2005),
pp. 1361-1382.



k1
2X +Y =23X

ks
kq k3 k7
Y20z X=2Z7
ks ko ke

Reaction Network + Mass-action kinetics yields

X = kix%y — kex® + k3 — (ko + k7)x + kez

v = —kixPy + kex® — kay + ks

z= k7X— kGZ

Q. Does the phosphofructokinase reaction network admit

multiple steady states?



k:
2X + Y = 3X

kg
kq k3 k7
Y=20=2X=27
ks ke ke

Reaction Network + Mass-action kinetics yields

x = kix?y — kgx® + k3 — (ko + k7)x + kez
v = —kixPy + kex® — kay + ks

z = kyx — kez

Q. Does the phosphofructokinase reaction network
multiple steady states?



Y 22X
Stoichiometric subspace:
span {(2,-1),(=2,1)} = {(x,y)Ix + 2y = 0}
x =2kiy — 2kox®> =0
y=—ky+kx*>=0

y=—x° , x+2y=c




® CapPpos(G) = 2, CaPuondeg(G) = 2 and capey —stan(G) = 1

® cap,.s(G) =2 = G is multistationary.

® CaDyondeg(G) =2 == G is nondegenerately multistationary.
® CaDeypstab(G) =1 == G is not multistable.



Q. Does a given reaction network admit multiple positive
steady states?

Strategy: Examine “pieces’ of network.



Example (It's complicated!)

(NMi: A= B , 3A+B—4A|

(No: A+B—0 , 3A—4A+B|

Both N; and N, admit multiple steady states within their
respective stoichiometric compatibility classes. But

Ny UN, :
A—B , 3A+B—4A
A+B—0 , 3A—4A+ B

N; U N, does not admit multiple steady states.




Q. When do network components inform about the full
network?



Example (Fully Open Network G)

0+~ AB,C,D,E
A+ C <+ 2A
C+D+~A+B
A+C+E<~2D+B




Example (Fully Open Network G and

)

0—A,B,C,D,E
A+ C = 2A
C+D+ A+B
A+C+E2D+8B




Let S represent the stoichiometric subspace of G.

Theorem (J and Shiu, '12)

@ I/f N is a subnetwork of G such that Sy = S¢ then
Ca“pnondeg(G) > Capnondeg(N) and
CaPexp—stab(G) = CaDexp—stab(N) (independent of kinetics).
@ Suppose N is obtained from G by removing some species and:

(a) Sw is full-dimensional, and

(b) G contains both inflow and outflow reactions for any species
that is in G but not in N.

Then Capnondeg(G) > Ca‘pnondeg(N) and

Ca'pexpfstab( G) > Capexpfstab(N)'

Theorem (J and Shiu, '12)

If N is a fully open embedded network of a fully open network G,
then Capnondeg(G) > Capnondeg(N) and
Capexp—stab( G) > Capexp—stab(N)'




Example (Fully Open Network G and

)

0+—A,B,C,D,E
A+ C < 2A
C+D A+B
A+C+E&2D+B
We know that the following network is nondegenerately
multistationary:
0=AB
A— 2A
0+~ A+B




Kuratowski's Theorem: Every nonplanar graph contains K33 or Ks
as a graph minor.

These are “atoms of nonplanarity”



Nondegenerately multistationary fully open networks that are
embedding-minimal are atoms of multistationarity.



Towards a catalog of atoms of multistationarity.



Nondegenerately multistationary fully open networks that are
embedding-minimal are atoms of multistationarity.

A -2A
A+B-0

A+B-0

cd A+D-2A
Q)

C ;
A+C-2A A-2A co A+D-2A A-2A b2 A+D-2A
A-2C A+B-2C A+B-C A+B-C+E A+B-D

$ o1y $

A+C-2A A+D-2A A+D-2A A+D-2A
A+B-2C A+B-2C A+B-C+E A+B-C+D



(Joint work with Shiu) Up to symmetry, the CFSTR atoms of
multistationarity that have only two non-flow reactions (irreversible
or reversible) and complexes that are at most bimolecular:

QO (05A 058, A—2A, A+ B — 0}

@ {05 A 05 B, A—2A, A= 2B}

© (05A 05B,05C, A»2A AS B+ C)
0 {05A 058, A~ A+B, 2B — A

Q@ {05A 058, A~ A+ B, 2B — 2A}

0 {05A 058, A= A+ B — 24}

Q@ {05A 058, A—>A+B, 2B— A+ B}
Q {05A 058, B52A— A+ B}

Q@ {05 A 05 B, B—2A— 2B}

© {05A 05B,05C, A— B+ C — 24}
@ (05A 05 B, A+B—2A, A— 2B}



Theorem (J '13)

Let ai,az,...,an, b1, by, ..., by > 0. The (general) fully open
network with one reversible non-flow reaction and n species:

05 Xq 0sX, - 0SS X,
a1 Xi+...a.Xp S b1 X1+ ... b X,

is multistationary if and only if

max Z aj , Z by >1

ibj>a;j i:aj>b;

'Formulated at MBI summer program



Two families of atoms containing one non-flow reaction

(1)
0+ A
mA — nA n>m>1
(2]
0 A
0+~ B

A+ B — mA+nB n>1, m>1



Two families of atoms containing one non-flow reaction

(1)
0+ A
mA — nA n>m>1
(2)
0+ A
0+~ B

A+ B — mA+nB n>1, m>1

@ Infinitely many atoms!

@ No one-reaction at-most-bimolecular atoms.




Q. Are there finitely many or infinitely many
at-most-bimolecular atoms?



Sequestration Network

X1—>mX,,
X1+Xo—0

Xp—1+ X, — 0

(where n>2,m>1)



Theorem (J & Shiu '15)

@ The fully open extension !~<m’,, of the sequestration network
Km,n is multistationary if and only if m > 1 and n > 1 is odd.

@ No fully open network that is an embedded network of Rm,,,
(besides K, , itself) is multistationary.

° !N(m,,, for m > 1 and odd n is a candidate for being fully open
atom of multistationarity.

o Future work: Nondegeneracy 2 of steady states.

2K, 3 is nondegenerate and therefore an atom of multistationarity (Bryan
Félix, Anne Shiu, Zev Woodstock (2015) )



Phosphofructokinase reaction network (part of glycolysis)

2X + Y 3X
ks

4 k3
Y=0=2 X Z
ks ko ke

Reaction Network + Mass-action kinetics yields

x = kix?y — kgx® + k3 — (ko + k7)x + kgz
y = —k1X2y + k8X3 — kay + ks
Z = kix — kgz

Q. Does the phosphofructokinase reaction network admit multiple
steady states?



Step 1. Remove reaction

System with and without Z are steady-state equivalent (up to
projection):

k:
2X + Y = 3X

kg
kq k3 k7
Y=20=2X /7
ks ko 6

Resulting network is fully open.



Step 2. Remove reaction

k
2X 4+ Y = 3X
0
W

kq k3
Y=20=2X
ks ko



Step 3. Remove species

Delete species Y:

2X ¥ My 3x

k3
Y/ = 0=X
ks ko



Resulting network is the smallest atom of multistationarity

oX My 3x

ks
0=X
k2

0= x = ks — kox + kg x°

for k3 > 4ki k3 has two positive steady states:

xt = ky + 1/ k3 — 4kiks



Lifting steady states to the full system

For € > 0, there exist k4 and ks sufficiently large, and kg
sufficiently small such that the fixed points of the full system are
within an e-ball of

(X*,Y*,Z*):
1
— 1 k k2 4kik
<2k1(k2+\/k 4kik3), , 2k1k6( 2+ 1 3)>

()<>)<>k7 \/>i<>|<7 Z**) —

1 k7
ky — A/ K2 — dkiks), 1, ky — \/ K2 — 4kyk
(g U= VB k). 1 3 e~ /i~ ki)




@ Network embedding provides a tool for lifting nondegenerate
multistationarity from smaller embedded networks.

@ Need a catalog of atoms of multistationarity. Moving in that
direction.



Thank you!
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