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Abstract Within the appropriate parameter regime, a deter-
ministic model of a pair of mutually inhibitory neurons
receiving excitatory driving currents exhibits bistability—
each of the two stable states corresponds to one neuron
being active and the other being quiescent. The presence of
noise in the driving currents results in a system that ran-
domly switches back and forth between these two states,
causing alternating bouts of spiking activity. In this work,
we examine the random bout durations of the two neu-
rons and dependence on system parameters. We find that
bout durations of each neuron are exponentially distributed,
with changes in system parameters altering only the mean
of the distribution. Synaptic inhibition independently con-
trols the bout durations of the two neurons—the mean bout
time of a neuron is a function of efferent (or outgoing)
inhibition, and is independent of afferent (or incoming) inhi-
bition. Furthermore, we find that the mean bout time of a
neuron exhibits a critical dependence on the time course
(rather than amplitude) of efferent inhibition—mean bout
time of a neuron grows exponentially with the time course
of efferent inhibition, and the growth rate of this exponen-
tial function depends only on the excitatory driving current
to that neuron (and not on any other system parameters).
We discuss the relevance of our results to the regulation
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1 Introduction

Adult mammals cycle between the behavioral states of
sleep and wakefulness, spending a random amount of time
within each state (even in diurnal mammals such as humans,
long stretches of nightly sleep tend to be punctuated by
periods of wakefulness). The duration of each sleep bout
is an exponentially distributed random variable, while the
duration of a wake bout follows a heavy-tailed distribu-
tion (which resembles a power-law), with both sleep and
wake bouts exhibiting no bout-to-bout memory; in other
words, the duration of the current bout is statistically inde-
pendent of the duration of prior bouts (Halász et al. 2004;
Lo et al. 2002, 2004). Sleep-wake cycling within infant
mammals, however, is not only much more rapid, but also
displays qualitatively different dynamics. Recent investi-
gations indicate that in infant mammals both sleep and
wake bouts have an exponential distribution, with a heavy-
tailed wake bout distribution appearing only later in life
(Blumberg et al. 2005; Gall et al. 2009; Karlsson et al. 2004,
2005; Kleitman and Engelmann 1953).

Behavioral sleep and wake states are each correlated
with the activity of ‘sleep-active’ (e.g., nucleus pontis oralis
cells) and ‘wake-active’ (e.g., dorsolateral pontine tegmen-
tum cells) populations within the brain that may reciprocally
inhibit each other. During a sleep bout, ‘sleep-active’ neu-
rons fire and ‘wake-active’ neurons are quiet, while during
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a wake bout, ‘wake-active’ neurons fire and ‘sleep-active’
neurons are silent (Blumberg et al. 2005; Karlsson et al.
2005). This picture is reminiscent of stochastic switch-
ing within a bistable system; from a dynamical systems
perspective, sleep and wakefulness represent two determin-
istically stable states of the system, with the two stable
states given by spiking of one population and quiescence
of the other. Without noise, the system will permanently
settle into one state or the other, but in the presence of
noise the system will flip back and forth between the two
states.

In order to study stochastic switching in a system with
reciprocal inhibition, we employ a simple and intuitively
tractable model consisting of a pair of integrate-and-fire
neurons, each of which receives an independent noisy exci-
tatory current and synaptically inhibits the other neuron
(Fig. 1). We find that within the appropriate parameter
regime, the two neurons exhibit alternating bouts of spik-
ing activity with exponentially distributed bout durations.
We show that mean bout times can be independently con-
trolled by inhibition—varying the inhibition delivered by
neuron j (efferent inhibition of neuron j ) changes the
mean bout time of neuron j alone, and leaves the mean
bout time of the other neuron untouched. On the other
hand, varying the excitatory driving current to one neu-
ron changes the mean bout time of both neurons (i.e., no
independent control). Furthermore, we find that the mean
bout time of neuron j is an exponential function of the
time course of efferent inhibition, and we find that the
growth rate of this exponential function depends only on
the excitatory driving current to neuron j . Finally, we dis-
cuss the insights that our results can provide into some
of the basic principles governing sleep-wake cycling in
infant rats.

2 Model

The model consists of two integrate-and-fire neurons,
each of which receives a noisy excitatory driving cur-
rent and provides synaptic inhibition to the other neuron
(Fig. 1).

2.1 Membrane potential

Each of the two cells within our system is modeled as an
integrate-and-fire neuron. The (nondimensionalized) mem-
brane potential V (j)(t) of each neuron j ∈ {1, 2} is
governed by an equation of the following form:

dV (j)

dt
=−gL

(
V (j) −E0

)
−g

(j)
inh(t)

(
V (j) −Einh

)
+ i(j)(t)

(1)

V (j)(t) = E0 for t ∈ (s, s + r), if V (j)(s) = Eth. (2)

V (j)(t) is the membrane potential of neuron j , gL =
0.05 ms−1 is the leak conductance, E0 = 0 is the resting
potential, and Einh = −0.67 is the reversal potential for
synaptic inhibition. The model has nondimensional mem-
brane potential, time in units of ms, while conductance gL

and g
(j)
inh(t) and the current i(j)(t) are in units of ms−1.

A spike is recorded when V (t) reaches a threshold value
Eth = 1, with V (t) being instantaneously reset to rest
Vreset = E0 = 0 following a spike. An absolute refractory
period of r = 2 ms is imposed by holding the membrane
potential at rest for 2 ms following a spike. Details of the
reduced dimensional model are given in Tao et al. (2004).

2.2 Excitatory drive

Each neuron j receives an independent noisy excitatory
current (referred to as the excitatory drive to neuron j )
described by the i(j)(t) term:

i(j)(t) =
∞∑

n=1

aj e
−bj

(
t−τ

(j )
k−1

)
1{

τ
(j )
k−1≤t

} (3)

The excitatory drive i(j)(t) jumps by a constant value aj

at a Poisson rate of λj (this models excitatory spikes from
outside the two-cell system), and decays at a constant rate
of bj = 1/3 ms−1. The time of the i-th spike in the

excitatory drive to neuron j is denoted by τ
(j)
i . Standard

Fig. 1 A pair of mutually
inhibitory neurons, each of
which receives an excitatory
driving current. In our model,
the neurons are
integrate-and-fire neurons with
noisy excitatory drive
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values of the rate and amplitude parameters are given by
λ∗

j = 1 ms−1 and a∗
j = 0.075 ms−1. All nonstandard

excitatory drives are described in terms of these reference
values.

We refer to Mj = ajλj as the strength of the excitatory
drive to neuron j and we refer to Nj = aj

λj
as the noisiness

of the excitatory drive to neuron j . To change the strength of
the excitatory drive to neuron j by a factor c (without vary-
ing the noisiness), we set the rate parameter to λj = √

cλ∗
and we set the amplitude parameter to aj = √

ca∗. To vary
the noisiness of the excitatory drive to neuron j by a factor
d (without changing the strength), we set the rate param-
eter to λj = λ∗√

d
and we set the amplitude parameter to

aj = √
da∗. We denote the strength and noisiness of the

standard excitatory drive by M∗ = λ∗a∗ and N∗ = a∗
λ∗ .

Figure 2 depicts the effects of varying M and N on the
excitatory drive.

dV (j)
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V (j)(t) = E0 for t ∈ (s+, r), if V (j)(s) = Eth

Parameter Notation Value(s)

Leak conductance gL 0.05 ms−1

Resting potential E0 0
Inhibitory reversal Einh −0.67

potential
Spiking threshold Eth 1
Refractory period r 2 ms
Resting potential E0 0
Decay rate of b 0.33 ms−1

excitatory current
Poisson rate of jumps λ Variable, standard

in excitatory current value 1 ms−1

Amplitude of jump a Variable, standard
in excitatory drive value 0.075 ms−1

Amplitude of jump in β Variable, standard
inhibitory conductance value 0.35 ms−1

On-time of inhibitory h Variable, standard
conductance value 6 ms−1

2.3 Synaptic inhibition

Synaptic inhibition is conductance-based and modeled
through the ginh(t) term. Let R(j)(t) denote the number of

spikes of neuron j before time t . Let R
(j)

h (t) := R(j)(t) −
R(j)(t − h) be the number of spikes of neuron j during the
interval (t − h, t] for h ≥ 0. For k �= j ∈ {1, 2},

g
(k)
inh(t) = βjR

(j)
h (t) (4)

Thus, if neuron 1 spikes at time s, then g
(2)
inh(t) is incre-

mented by an amount β1 at time s and decremented by β1

at time s + h1. Likewise, if neuron 2 spikes at time s, then
g

(1)
inh(t) is incremented by an amount β2 at time s and decre-

mented by β2 at time s + h2. We refer to βj and hj as
the amplitude of inhibition of neuron j and the time course
of inhibition of neuron j , respectively. Standard values for
the amplitude and time course of inhibition are given by
β = 0.35 ms−1 and h = 6 ms, though β1, β2, h1, h2 are var-
ied in some simulations. We note that β inherits units from
ginh. Both β and ginh have the nonstandard units of ms−1

as a consequence of the reduced dimensional nature of the
integrate-and-fire model that we employ.

2.4 Bouts

A bout of neuron j is defined as beginning at the first spike
of neuron j (following either a spike of the other neuron or
the beginning of a trial), and ending as soon as the other neu-
ron fires a single spike. The duration of a bout is a random
variable.

Trials were simulated in blocks of 1500 s (a time interval
chosen to be sufficiently greater than the longest bouts of
a few hundred seconds in our simulations). A minimum of
500 bouts were gathered to compute a mean bout time; the
final bout in each trial was discarded (since the final bout
was curtailed by the end of the trial). Simulations were car-
ried out using the explicit Euler method with a time step of
0.01 ms.

3 Results

Our system consists of a pair of mutually inhibitory
integrate-and-fire neurons, each of which receives a noisy
excitatory driving current (Fig. 1). Inhibitory synapses are
modeled as conductance-based, and a spike of neuron j pro-
duces a transient positive inhibitory conductance in the other
neuron modeled as a square pulse; we refer to the height of
this square pulse (βj ) as the amplitude of inhibition from
neuron j to the other neuron, while we refer to the temporal
length of this square pulse (hj ) as the time course of inhi-
bition from neuron j to the other neuron. The time course
and amplitude of inhibition from one neuron to the other, as
well as the strength and noisiness of the excitatory drive to
each neuron (M1,N1,M2,N2), are parameters that we varied
during the course of our investigation (see Section 2).
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Fig. 2 Effect of varying the
strength (M) versus the
noisiness (N) of the excitatory
drive. One realization of the
excitatory drive i(j)(t) is shown
for different combinations of
strength (rows) and noisiness
(columns)

3.1 Bistability and stochastic switching

We begin by considering the case where both neurons
receive the same constant excitatory drive and inhibit each
other with a fixed time course. In this deterministic system,

reciprocal inhibition with a weak amplitude of inhibition
results in a monostable system, while strong mutual inhibi-
tion yields bistability. Weak inhibition results in oscillatory
spiking—both neurons fire at the same frequency but with
a fixed phase difference (Fig. 3, left). A large body of prior

Fig. 3 Dynamical behavior of a pair of symmetrically coupled
integrate-and-fire neurons. Each neuron receives a constant excita-
tory drive as well as synaptic inhibition from the other neuron. Left:
In the case of weak inhibitory coupling (inhibitory amplitude: β1 =
β2 = 0.1 ms−1), the system is monostable. The two neurons oscil-
late and alternate spikes, with mutual inhibition causing the spikes
of the two neurons to lock into a precise phase relationship. Nearly
all initial conditions converge to this attractor. (However, if the two
neurons have precisely identical initial conditions, then they will
fire in perfect synchrony, implying that perfect synchrony represents
unstable steady-state behavior of the system). Right: In the case

of strong inhibitory coupling (inhibitory amplitude: β1 = β2 =
0.35 ms−1), the system is bistable. The right panel shows neuron
1 firing at a constant frequency with neuron 2 quiescent due to
inhibition, corresponding to one stable state of the system. Since
all parameters are symmetric, a reversal of the two neurons’ ini-
tial conditions would result in neuron 2 firing at a constant fre-
quency with neuron 1 silent, corresponding to a second stable
state of the system. Depending on the initial conditions, the sys-
tem converges to either one stable state or the other. The time
course of inhibition is fixed at h1 = h2 = 6 ms for these
simulations
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work has explored the effects of weak inhibitory coupling
on the dynamics of reciprocally connected neurons (e.g., see
Elson et al. 2001; Jalil et al. 2010; Rowat and Selverston
1997; Van Vreeswijk et al. 1994), or has explored strong
inhibitory coupling, but only in the deterministic setting
(Skinner et al. 1994; Terman et al. 1998; Wang and Rinzel
1992); we do not consider the weak coupling regime any
further in this paper.

Strong inhibition, however, causes one neuron to spike
at a fixed frequency while the other displays subthreshold
oscillations for all time. Since the system is symmetric, the
identities of the active and suppressed neurons are deter-
mined by the initial conditions, indicating the existence of
two stable states within the system (Fig. 3, right). We note
that the parameters need not be symmetric—the system
can remain in the bistable regime even with asymmetry in
the parameters governing inhibition or the excitatory drive,
though the attraction domains of each stable state may be
altered. We find that the amplitude of synaptic inhibition is

one of the major factors that determines whether the system
is monostable or bistable (data not shown). Unless otherwise
specified, we will choose synaptic inhibition to be strong
enough to place the system in the bistable regime. For the
special case where the system parameters are symmetric
along with the dynamical equations, the dynamics are stud-
ied in more detail, and formulated as a Markov chain, in
Kirillov et al. (1993).

In the deterministically bistable regime, the presence of
noisy excitatory drives can cause the system to stochas-
tically switch back and forth between the two stable
states (i.e., to randomly transition from neuron 1 firing
with neuron 2 silent to neuron 2 spiking with neuron
1 quiescent, and vice versa). The system therefore alter-
nates between bouts of spiking activity of neuron 1 and
neuron 2, and we can measure the durations of these
bouts to assess the behavior of the system (Fig. 4; see
Section 2.4 for definition of a bout). The primary quan-
tity of interest is the sequence of random bout durations

Fig. 4 Dynamical behavior of a pair of symmetrically coupled
integrate-and-fire neurons in the presence of noise. Each neuron
receives independent realizations of a noisy excitatory drive with fixed
statistical structure as well as synaptic inhibition from the other
neuron. The corresponding deterministic system is bistable, and
hence the noise added to the excitatory drive causes stochastic switch-
ing between the two stable states. Left: Membrane potential, excitatory
drive, and synaptic inhibitory current for neurons 1 and 2. One neu-
ron spikes for a random amount of time, inhibiting the other neuron
while it is spiking. At some point, due to noise within the system,

the other neuron is able begin spiking, inhibiting the first neuron,
and a bout switch ensues. In this manner, the two neurons alter-
nate bouts of spiking activity, with each bout lasting for a random
length of time. Right: Bouts of spiking activity of neurons 1 and 2
(see Section 2 for the definition of a bout). For these simulations,
the synaptic inhibition has an amplitude of β1 = β2 = 0.35 ms−1

and a time course of h1 = h2 = 6 ms. The strength and noisiness
of the excitatory drives to the two neurons are given by the stan-
dard reference values: M1 = M2 = M∗ and N1 = N2 = N∗
(see Section 2 for details)
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, where T

(j)
n is the

duration of the nth bout of neuron j .

3.2 Exponential distribution of bout length

We find that the bout durations T
(j)
n are independent of

each other for all j and n, and that the bout durations
T

(j)

1 , T
(j)

2 , T
(j)

3 , . . . are identically distributed for fixed j .
In other words, each bout duration is independent of previ-
ous bout durations (either past bouts of the same neuron or
past bouts of the other neuron), and all bout durations of a
particular neuron have the same distribution.

Since all bout durations of a particular neuron are inde-
pendent and identically distributed, we can pool bouts of
neuron j in order to empirically compute the distribution
of neuron j ’s bout durations. We find that the empirical
complementary cumulative distribution of bout durations of
each neuron j has an exponential form: P(T (j) > s) =
e−s/mj , and that modifying parameter values alters only
the mean mj of the distribution, not its exponential nature.
Figure 5 shows the exponential distribution of bout lengths
of one of the two neurons for two different parameter values.
Since an exponential distribution is completely determined
by its mean, it is sufficient to identify the mean bout length
mj .

A fundamental property of the exponential distribution is
memorylessness; moreover, this property characterizes the
distribution (i.e., a random variable is exponentially dis-
tributed if and only if its distribution is memoryless). The

property of memorylessness, within the current context, can
be described as follows: whilst in the midst of a spiking
bout, the subsequent amount of time that spiking will con-
tinue is independent of the time elapsed since the beginning
of the bout. In other words, neuron j has no memory of how
long it has been spiking; if the neuron is s ms into a spik-
ing bout, the future duration of the bout has no dependence
on s. When an exponential distribution arises in nature,
we can therefore ascertain why the distribution arises by
understanding why there is a lack of memory within the
system.

Why is there a lack of memory within a spiking bout?
Within the confines of our system, there are only two vehi-
cles for the creation of memory: the noisy excitatory drive
or the synaptic inhibition. The mean of the excitatory drive
to either neuron is constant through time (and fluctuations
occur over time scales that are fast relative to bout times),
implying that the system cannot keep track of how long a
neuron has been spiking through the excitatory drive. When
neuron j is spiking, the other neuron is inhibited, and as the
bout continues the inhibitory current to the suppressed neu-
ron approaches a steady-state mean value. Even though the
inhibitory current is noisy, once the mean has approached
a steady-state the inhibition provides no information about
the prior duration of the ongoing bout. However, depend-
ing on the time course of synaptic inhibition, there is a
time scale at the beginning of a bout over which the inhi-
bition rises to reach its steady-state mean value. For longer
inhibitory time courses, a bout switch is more likely to occur

Fig. 5 For a pair of mutually inhibitory neurons receiving noisy
excitatory drives, bout length for a particular neuron is always an expo-
nentially distributed random variable, regardless of system parameters.
Changes in system parameters alter only the mean of the distribu-
tion, but not its exponential nature. Bout lengths of neuron 1 are
shown in two sample network regimes; in regime 1, the inhibitory
time course is set at h1 = h2 = 9 ms, while in regime 2 the
inhibitory time course is set to h1 = h2 = 6 ms. Parameter val-
ues are symmetric for the two neurons. In each regime, approximately
100,000 bout lengths were computed. Left: Number of bouts of length

T versus T , with data pooled in 10 ms bins. Middle: Empirical com-
plementary cumulative distribution function, P(Boutlength > T ) =
Fraction of Bouts of Length > T versus T . Right: Semilog version of
the middle panel. The linear relationships are characteristic of expo-
nentially distributed random variables. Mean bout length in regime
1 is m1 = m2 = 533 ms, while mean bout length in regime 2 is
m1 = m2 = 96 ms. For these simulations, the inhibitory amplitude
is set at β1 = β2 = 0.35 ms−1, and the strength and noisiness of the
excitatory drives to the two neurons are given by the standard reference
values: M1 = M2 = M∗ and N1 = N2 = N∗



J Comput Neurosci

at the beginning of a bout, while the inhibitory current is
making its approach to steady-state behavior, which may
create memory within the system and break the exponen-
tial distribution. This does not occur because we find that
mean bout length increases exponentially as a function of
inhibitory time course (Fig. 8, left), so that the time scale
over which the inhibitory current approaches steady-state is
always negligibly small compared to the time scale of bout
lengths.

3.3 Escape vs. release

Two mechanisms may contribute to a bout switch: 1)
escape via excitation, or 2) release from inhibition; more
generally—a combination of the two mechanisms may be
needed for a bout switch. A large, positive fluctuation in
the excitatory drive to the suppressed neuron may allow
its membrane potential to surmount the incoming inhibition
and climb to threshold, with a bout switch ensuing (escape).
Alternatively, a gap in incoming inhibition may allow the
silent cell’s membrane potential to respond to the excitatory
current and meander to threshold, resulting in a bout switch
(release).

The convolved mechanisms of release and escape can
be teased apart by modulating the noisiness of the excita-
tory drive to one of the neurons. Consider the extreme case
where the excitatory drive to one neuron (denoted as neuron
n ∈ {1, 2}) has positive noisiness, while the other neuron
(neuron f (�= n) ∈ {1, 2}) receives a flat excitatory drive of
the same strength (Nn > 0, Nf = 0, Mn = Mf = M). In
this scenario, bouts of neuron n end purely as a consequence
of release: if neuron n is in the middle of a bout, then neuron
n is spiking and neuron f is silent, and since the excitatory
drive to neuron f is constant, a gap in the inhibitory cur-
rent delivered by neuron n is the only way neuron f can
reach threshold to cause a bout switch. Bouts of neuron f ,
on the other hand, end purely as a consequence of escape: if
neuron f is in the middle of a bout, then neuron f is spiking
and neuron n is silent; since the excitatory drive to neuron
f is flat, neuron f spikes and delivers inhibition regularly,
so that neuron n can cross threshold and cause a bout switch
only via a positive fluctuation in its own excitatory drive.

In order to quantify the contribution of the release mech-
anism to bout switches, we define the release ratio ρ of the
two-neuron system (for fixed β = β1 = β2 and h = h1 =
h2) by

ρβ,h(M, Nn) := mf

mn + mf

, (5)

where mj denotes the mean bout duration of neu-
ron j . We will fix β and h at their standard val-
ues (0.35 ms−1 and 6 ms, respectively); henceforth, we

will drop the subscript and refer to the release ratio as
ρ(M, Nn).

When neuron f is in a bout, neuron n must escape to
cause a bout switch, while when neuron n is in a bout, neu-
ron f must be released for a bout switch to ensue. Thus, if
release is the primary mechanism by which bout switches
occur (and escape is rare), then bouts of neuron f will be
substantially longer than bouts of neuron n (mf >> mn),
and ρ will be close to 1. However, if escape is the domi-
nant mechanism by which bout switches occur (and release
is rare), then bouts of neuron n will be considerably longer
than bouts of neuron f (mn >> mf ), and ρ will be near
0. The value of ρ therefore tells us about the relative con-
tributions of the escape and release mechanisms to bout
switches in the original system (the system with M1 =
M2 = M , N1 = N2 = Nn). ρ close to 1 implies that (in
the original system) release is the primary mechanism of
bout switches (and the role of escape is negligible), while
ρ close to 0 implies that (in the original system) escape is
the chief trigger for bout switches (and the role of release
is negligible). More generally, 0 ≤ ρ < 1/2 if escape
dominates release and 1/2 < ρ ≤ 1 if release dominates
escape.

Since in our original system the excitatory drives have
standard noisiness (N1 = N2 = N∗), we will consider the
case where Nn = N∗. In Fig. 6a (top), we fix Nn = N∗ and
plot ρ(M, Nn) as a function of M(= Mn = Mf ). For low
values of M , we find that ρ > 1/2, while for high values
of M we find that ρ < 1/2. Thus, we conclude that for low
values of M (values near M = 1) release from inhibition
is the primary mechanism by which bout switches occur in
the original system, while for higher values of M (values
near M = 2) escape via excitation is the chief bout switch-
ing mechanism in the original system. Moreover, since ρ

decreases monotonically from ∼ 1 →∼ 0 as M is increased
from 1 → 2, we conclude that as the strength of the excita-
tory drives is increased from M = 1 to M = 2, the escape
mechanism contributes more while the release mechanism
contributes less to initiating bout switches in the original
system (for M near 1.5, ρ ∼ 1/2, implying that in this case
escape and release play comparable roles in eliciting bout
switches in the original system).

Figure 6a (top) also shows that for very low values of
M (i.e., for M ≤ 1), ρ is an increasing function of M .
This occurs because for very low values of M , the time-
averaged mean value of the excitatory drive to the two
cells is insufficient (even without inhibition) to push the
membrane potential of either cell to threshold. Thus, below
M = 1, (in the original system) a cell can spike only if a
positive fluctuation in its excitatory drive occurs, and hence
the escape mechanism must contribute to bout switches. As
M assumes smaller values below M = 1, the size of the
positive fluctuation in a cell’s excitatory drive required to
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Fig. 6 A pair of mutually inhibitory neurons receiving noisy excita-
tory drives. For parameter regimes in which alternating activity bouts
occur, a switch from a spiking bout of one neuron to a spiking bout
of the other neuron can occur via two mechanisms: 1) a gap in the
incoming inhibition to the suppressed neuron can allow it to begin
spiking (release), or 2) a positive fluctuation in the excitatory drive to
the silent neuron can allow it to overcome inhibition and reach spiking
threshold (escape). a In the top panel, the release ratio of the two neu-
ron system ρ(cM∗, N∗) (see text) is plotted for c ranging from 0.25
to 3.25 (to maintain computationally tractable bout times, Nf , rather
than being set to Nf = 0, is set to Nf = εN∗,ε = 10−4). In the
bottom panels, we fix the strength of the excitatory drive to both neu-
rons at either a value where the primary bout switching mechanism

is release (M1 = M2 = M∗) or at a value where the primary bout
switching mechanism is escape (M1 = M2 = 2M∗); we plot the mean
bout time of the two neurons as the noisiness of the excitatory drive to
neuron 2 is varied from noisy (N2 = N∗) to nearly flat (N2 = εN∗,
ε = 10−4) and the noisiness of the excitatory drive to neuron 1 is fixed
at N1 = N∗. The x-axis is on a log scale for visualization. B) Once the
strength of the excitatory drive is very large, alternating bouts of spik-
ing activity no longer occur. Plots show the spiking activity of neurons
1 and 2, with the strength of the excitatory drive to the two neurons set
at M1 = M2 = 6M∗. The noisiness of the excitatory drive to the two
neurons is fixed at the standard value (N1 = N2 = N∗). For all simu-
lations, the inhibitory time course is fixed at h1 = h2 = 6 ms and the
inhibitory amplitude is fixed at β1 = β2 = 0.35 ms−1

induce it to spike becomes larger, and the escape mechanism
contributes correspondingly more to bout switches.

Why is it the case that (in the original system) release
is dominant for low M while escape prevails for higher
M? When the strength of the excitatory drive to the two
neurons is low (relative to synaptic inhibition), inhibition
eclipses excitation within the system. Within this inhibition-
dominated bout regime, inhibition will keep the membrane
potential of the suppressed neuron far below threshold, and
hence a positive fluctuation in the silent neuron’s excitatory
drive sufficiently large to allow its membrane potential to
overcome inhibition and reach threshold will be a highly
unlikely event. Since the strength of the excitatory drive to
the active neuron is relatively low, a large interspike inter-
val in the firing of the active neuron (causing a gap in the
inhibitory current to the suppressed neuron) is a far more
likely event, and release will be the primary bout switching
mechanism.

The opposite occurs when the strength of the excita-
tory drive to the two neurons is high (relative to synaptic

inhibition). In this case, the system is within an excitation-
dominated bout regime—the large excitatory drive to the
suppressed neuron implies that the inhibitory current from
the active neuron keeps the silent cell’s membrane poten-
tial only slightly below threshold. Thus, in order for the
suppressed cell to reach threshold, either a small positive
fluctuation in the excitatory drive to the suppressed cell is
required (a likely event) or a gap in the inhibitory current
to the silent neuron is needed (an unlikely event, since the
relatively high excitatory drive to the active neuron causes
it to spike frequently). In the excitation dominated regime,
escape will therefore be the principal mechanism by which
bout switches occur.

If the strength of the excitatory drive is fixed at a
very large value (relative to synaptic inhibition), excitation
becomes overwhelmingly powerful, with inhibition having
little impact on the system—alternating bouts of activity
no longer occur, and both neurons spike continuously and
nearly independent of each other. Figure 6b shows the inde-
pendent, continuous spiking activity of the two neurons
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within our system when the strength of the excitatory drives
is set at a very high value (M1 = M2 = 6M; other sys-
tem parameters assume their standard values). A detailed
analysis of the transition of the system from ‘having bouts’
to ‘not having bouts’, as well as of the escape and release
mechanism, will be presented elsewhere.

3.4 Control of mean bout time

The bout durations of the two neurons are a function of
system parameters, including those that govern synaptic
inhibition and those responsible for the excitatory drive. In
this section, we determine the effects of varying the excita-
tory drive parameters versus those of varying the synaptic
inhibition parameters on mean bout times. In Fig. 7 (left),
we fix the strength of the excitatory drive to neuron 1 at
M1 = M∗ and vary the strength of the excitatory drive to
neuron 2 (M2). The graph shows that as M2 is increased,
the mean bout time of neuron 1 (m1) decreases while the
mean bout time of neuron 2 (m2) increases. In order to
explain the origin of this behavior, we consider the case
where M2 > M1 = M∗. M2 > M1 = M∗ implies that
when neuron 2 is active, neuron 2 spikes more frequently
than in the case M2 = M∗ and sends high time-averaged
inhibition to neuron 1, resulting in a longer mean bout time
for neuron 2 (than in the case M2 = M∗). When neuron 1
is active, neuron 1 spikes at the standard rate corresponding
to excitatory drive M1 = M∗, sending the standard value
of time-averaged inhibition to neuron 2; however, the high
excitatory drive to neuron 2 (M2 > M1 = M∗) implies
that a bout switch can be initiated more easily than in the
case M2 = M∗, yielding a shorter mean bout time for neu-
ron 1 (than in the case M2 = M∗). An analogous argument

explains why in the case M2 < M1 = M∗, m2 decreases
and m1 increases. Thus, these results imply that varying the
excitatory drive to one neuron modulates the mean bout time
of both neurons.

Inhibition, on the other hand, exerts independent control
over the mean bout time of the two neurons, in the sense that
inhibition from neuron i to neuron j only affects mi (with
no effect on mj ). In other words, the mean bout time of a
neuron is a function of it’s efferent inhibition but is inde-
pendent of it’s afferent inhibition. Figure 7 plots m1 and m2

as the amplitude β2 (middle panel) or time course h2 (right
panel) of inhibition from neuron 2 to neuron 1 is varied
(with the amplitude β1 and time course h1 of inhibition from
neuron 1 to neuron 2 held fixed). The two plots show that
as either β2 or h2 is increased, m2 rises while m1 remains
fixed. These results imply that (for i �= j ), mi is indepen-
dent of βj and hj . The intuition behind this independent
control is the following: when neuron i is in the midst of
a bout, the other neuron does not fire, and hence inhibition
from the other neuron can have no impact on the duration of
neuron i’s bout.

Furthermore, Fig. 7 (middle) shows that the amplitude
of inhibition exerts little influence over bout length—once
inhibitory magnitude is sufficiently large, mean bout time
appears to saturate. On the other hand, Fig. 7 (right) shows
mean bout time seems to show no saturation and grows
rapidly with the inhibitory time course. In order to examine
the dependence of mi on hi , we plot mean bout time ver-
sus inhibitory time course with a log scale on the y-axis in
Fig. 8 (left); the striking linear relationship on a log scale
indicates an exponential dependence of mean bout time on
the time course of synaptic inhibition (i.e., there exists a
number σi such that mi ∝ eσihi over at least five orders of

Fig. 7 Synaptic inhibition exerts independent control over the mean
bout time of each of the two neurons, while excitatory drive does not.
Left: The excitatory drive to neuron 1 has fixed strength M1 = M∗,
while the strength of the excitatory drive to neuron 2 is given by
M2 = cM∗, where c ranges from 0.5 to 2. The noisiness of the
excitatory drive to both neurons is fixed at N1 = N2 = N∗. For
both neurons, the time course and amplitude of inhibition are fixed
at h1 = h2 = 6 ms and β1 = β2 = 0.35 ms−1, respectively. Mid-
dle: The amplitude of inhibition from neuron 1 to neuron 2 is fixed at
β1 = 0.35 ms−1, while the amplitude of inhibition from neuron 2 to

neuron 1 is varied from β2 = 0.1 to β2 = 40 ms−1. The inhibitory
time course for both neurons is set to h1 = h2 = 6 ms, and the strength
and noisiness of the excitatory drive to both neurons are set at the stan-
dard values: M1 = M2 = M∗ and N1 = N2 = N∗. Right: The time
course of inhibition from neuron 1 to neuron 2 is fixed at h1 = 6 ms,
while the time course of inhibition from neuron 2 to neuron 1 is var-
ied from h2 = 1 ms to h2 = 10 ms. The amplitude of inhibition for
both neurons is β1 = β2 = 0.35 ms−1, and the strength and noisiness
of the excitatory drive to both neurons are set at the standard values:
M1 = M2 = M∗ and N1 = N2 = N∗
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Fig. 8 Dependence of mean bout time on inhibition for a pair of
reciprocally coupled inhibitory neurons. Left: Semilog plot of the
mean bout time of neuron 1 (m1) as a function of the time course
of inhibition from neuron 1 to neuron 2 (h1). There is a nearly per-
fect exponential relationship given by m1(h1) = τ1e

σ1h1 , where
σ1 = 0.56 ms and τ1 = 3.1 ms−1. Amplitude of inhibition is
fixed at β1 = β2 = 0.35 ms−1. Right: Semilog plot of the mean

bout time of neuron 1 (m1) as a function of the amplitude of inhibi-
tion from neuron 1 to neuron 2 (β1). Time course of inhibition is fixed
at h1 = h2 = 6 ms. For all simulations, the strength and noisiness
of the excitatory drive to both neurons are fixed at the standard val-
ues: M1 = M2 = M∗ and N1 = N2 = N∗. The relationships seen in
both panels are qualitatively similar for all parameter regimes in which
bouts are observed

magnitude). A slight deviation from linearity can be seen
for the longest hi , but this is an implementation issue—we
ran trials in 1500 s blocks, so for very long mean bout times
we miss some of the longest bouts, leading to means that
are slightly reduced from their true values. Since mean bout
duration is modulated primarily by the time course, rather
than the amplitude, of inhibition (compare the left and right
panels of Fig. 8), we focus on the dependence of mean bout
time on the time course of synaptic inhibition.

Lengthening the time course of inhibition can yield arbi-
trarily large bout durations; as shown in Fig. 8 (left), varying
the inhibitory time course from 1 ms to 25 ms causes mean
bout time to change through several orders of magnitude
(from ∼ 50 ms to ∼ 500 s). Moreover, the left panel
shows that mean bout time is well-described as an expo-
nential function of inhibitory time course. For the parameter
regime employed in Fig. 8, we find that this relationship is
given by m1(h1) = τ1e

σ1h1 , where h1 is the time course
of inhibition from neuron 1 to neuron 2, τ1 = 3.1 ms,
and σ1 = 0.56 ms−1. τ1 represents the y-intercept of the
exponential (the mean bout time when the time course of
inhibition is 0 ms), while σ1 describes the growth rate of
the exponential (i.e., the sensitivity of mean bout time to
changes in the time course of inhibition).

3.5 Inhibitory sensitivity

In terms of synaptic inhibition, time course is therefore the
chief determinant of mean bout time, with an exponential
relationship given by mj (hj ) = τj e

σj hj . The growth rate of
this exponential, σj , describes the sensitivity of bout dura-
tions to inhibitory time course, and hence is indicative of
robustness to small changes in the time scale of inhibition.
Large values of σj signify exquisite sensitivity of mean bout

length to tiny variations in inhibitory time course, while
more diminutive values of σj imply robustness of mean bout
time to small fluctuations in the time course of inhibition.
Due to the importance of this growth rate, we define

σj = inhibitory sensitivity of neuron j, with

mj (hj ) = τj e
σj hj ,

where mj is the mean bout length of neuron j , hj is
the time course of synaptic inhibition from neuron j to
the other neuron, τj is the y-intercept of the exponential
function mj (hj ), and σj is the growth rate of the exponen-
tial function mj (hj ).

We can then inquire as to the dependence of the
inhibitory sensitivity on various system parameters. Figure 9
shows that changing the amplitude of inhibition from neu-
ron 1 to neuron 2 has no impact on σ1, and hence affects
m1 only by varying the y-intercept τ1 (i.e., through vertical
translations of the exponential function m1(h1)). Variations
in the excitatory drive, however, do modulate the inhibitory
sensitivity. As the strength of the excitatory drive to neuron
2 (M2) is increased (with M1,N1,N2 fixed), σ2 rises and σ1

remains fixed (Fig. 9a, left), while τ1 shrinks and τ2 remains
approximately constant (Fig. 10a, right). As the noisiness
of the excitatory drive to neuron 2 (N2) is increased (with
(N1,M1,M2 fixed), σ2 decays and σ1 remains fixed (Fig. 9b,
left), while τ1 remains constant and τ2 grows (Fig. 9b, right).
Thus, even though the excitatory drive does not exhibit
independent control of mean bout time (i.e., varying the
excitation to either neuron changes the mean bout dura-
tions of both neurons; Fig. 7, left), the excitatory drive does
exert independent control over inhibitory sensitivity (i.e., σj

depends on the excitatory drive to neuron j , but is inde-
pendent of the excitatory drive to the other neuron). The
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Fig. 9 With other parameters fixed, the mean bout time of neuron 1
(m1) is an exponential function of the time course of inhibition from
neuron 1 to neuron 2 (h1), with m1(h1) = τ1e

σ1h1 (see text). The
inhibitory sensitivity (σ1) as well as τ1 are plotted as a function of the
amplitude of inhibition from neuron 1 to neuron 2 (β1). Amplitude
of inhibition has no effect on σ1 (σ1 = 0.56 for all amplitude val-
ues). Both neurons receive excitatory drives with standard strength and
noisiness (M1 = M2 = M∗, N1 = N2 = N∗)

excitation to neuron j affects bout lengths of the other
neuron (neuron i) only through the y-intercept τi of the
exponential function mi(hi).

The inhibitory sensitivity σj is therefore dependent only
on the strength and noisiness of the excitatory drive to neu-
ron j , and is impervious to all other system parameters (an
analysis of this phenomenon is presented in the next sec-
tion). Large values of the inhibitory sensitivity yield delicate
sensitivity to inhibitory time course, while a small inhibitory
sensitivity results in bout lengths that are more robust to
tiny variations in the time course of inhibition. Within the
context of sleep-wake cells within the brain, robustness is
likely a crucial quality—it would be detrimental to sleep-
wake cycling if tiny fluctuations in the inhibitory time
course resulted in radical shifts in bout durations. Indepen-
dent control of inhibitory sensitivity by the excitatory drive
provides a mechanism for creating the desired robustness;
if the excitatory drives to the two neurons (independently)
have low strength and high noisiness, the inhibitory sensi-
tivities σ1 and σ2 can be kept small, yielding robust mean
bout times within the system (Fig. 11).

4 Mathematical insights

While a detailed analysis of the system of stochastic differ-
ential equations governing the switch arising from mutual
inhibition is beyond the scope of this exploratory study, we
may gain some insight into both the exponential nature of
bout time distributions and the exponential growth of mean
bout time as a function of the inhibitory time course by
examining simpler toy models. As observed earlier, bout
changes in the full system involve a combination of release
and escape. We will isolate the two mechanisms of release

and escape by constructing separate toy models for the pure
release and pure escape scenarios. Though highly simpli-
fied, our release and escape toy models capture the essential
features of bout switches caused by either the release or
escape mechanisms in the full system.

4.1 Pure release case

We start first with the mechanism of release. In the
inhibition-dominated bout regime, release is dominant and
a bout switch ensues when there is a sufficient reduction in
the inhibition delivered by the active neuron. For the pur-
poses of our release toy model, we will neglect the temporal
dynamics of the inhibitory current delivered by the active
neuron; hence, we will assume that each time the active
neuron spikes, the inhibitory current to the passive neuron
instantaneously jumps up by a value β and instantaneously
jumps down by β after h ms. This assumption is reason-
able because (in the full model) the temporal dynamics of
the inhibitory current occur over time scales that are fast
relative to h. Furthermore, we will neglect the amplitude
of inhibition β and regard the inhibitory current to the pas-
sive neuron as either being ‘on’ or ‘off’; this assumption is
reasonable because in the full model, for sufficiently large
β, the mean bout duration exhibits only slight dependence
on β (note in Fig. 8 that ∂(ln m)

∂β
approaches 0 for large β;

in comparison, ∂(ln m)
∂h

is much greater than zero for all h).
Finally, we invoke the pure release assumption: we will
assume that a bout switch occurs when the inhibitory current
to the passive neuron is ‘off’ for h0 ms (since we are assum-
ing that bout switches occur due to inhibitory release, we
neglect fluctuations in the excitatory drive to the suppressed
neuron, implying that once the inhibitory current turns ‘off’,
the silent neuron will climb to threshold if the inhibitory
current remains ‘off’ for a fixed length of time). This
assumption is consistent with our earlier discussion of the
release ratio (in which neuron f receives a flat excitatory
drive, and hence when neuron n, which receives a noisy
excitatory drive, is in a bout, release is the only way neuron
f can cause a bout switch). Under these assumptions, it is
clear that a bout switch will occur in our toy model if and
only if an interspike interval (ISI) of length h′ = h + h0 ms
(or greater) occurs in the ongoing spiking activity of the
active neuron.

We will argue that the waiting time for an ISI of size
greater than a threshold h′ is exponentially distributed.
Since the membrane potential of a neuron is reset to 0
following a spike, and since the statistics of the excita-
tory drive exhibit no temporal dependence, the membrane
potential of the active neuron is a renewal process, and the
ISIs τ1, τ2, . . . are independent and identically distributed
random variables. Thus, in the release toy model, the prob-
ability that a bout change will occur between spikes k and
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k + 1 is independent of k. In other words, the number
of spikes during a bout is a geometrically distributed ran-
dom variable, which we denote by K . It follows that a
bout duration is given by the random sum T = ∑K

i=1 τi .
Since the probability of a bout switch between spikes is
small, K is large with high probability. For large K and
independent and identically distributed {τi}, a law of large
numbers argument indicates that T ≈ KE(τ ), where E(τ )

represents the mean of an ISI. Since we consider bouts
that are several orders of magnitudes larger than E(τ ), (i.e.
in the case where K >> 20), the geometric distribu-
tion of K implies that T is closely approximated by an
exponential.

We will now argue that in the release toy model, not
only are bouts exponentially distributed, but mean bout time
is an exponentially growing function of the time course
of efferent inhibition h. Let Tn = τ1 + τ2 + . . . + τn

and J = min{j : τj > h′}. In order to characterize the

exponential bout time distribution TJ−1 + h′, it suffices to
calculate the expectation E(TJ−1 + h′):

E(TJ−1) = E(J − 1)E
(
τ |τ < h′) (6)

where J is a geometric random variable with success prob-
ability given by p = P

(
τ > h′). So E(J ) = 1/p and

E(J − 1) = P(τ<h′)
P(τ>h′) . This implies that

E
(
TJ−1 + h′) = h′ + E

(
τ ; τ < h′)

P(τ > h′)

= h′ + E(τ ) − E
(
τ ; τ > h′)

P(τ > h′)
(7)

We will additionally assume that τ has an exponential tail
with parameter λ (see Ostojic 2011 for evidence that ISIs of
a neuron being driven by a noisy current have an exponential
tail). In other words, there is an h̄ such that for all h′ > h̄,

Fig. 10 With other parameters fixed, the mean bout time of neuron j

(mj ) is an exponential function of the time course of inhibition from
neuron j to the other neuron (hj ), with mj (hj ) = τj e

σj hj (see text).
a σ1, σ2 and τ1, τ2 are plotted as the strength of the excitatory drive to
neuron 2 is varied (from M2 = 0.25M∗ to M2 = 1.75M∗) while the
strength of the excitatory drive to neuron 1 is fixed at M1 = M∗. The
noisiness of the excitatory drive to both neurons is fixed at the stan-
dard value (N1 = N2 = N∗). b σ1, σ2 and τ1, τ2 are plotted as the

noisiness of the excitatory drive to neuron 2 is varied (from
N2 = 0.25N∗ to N2 = 4N∗) while the noisiness of the exci-
tatory drive to neuron 1 is fixed at N1 = N∗. The strength
of the excitatory drive to both neurons is fixed at the stan-
dard value (M1 = M2 = M∗). The excitatory drive to neu-
ron j independently controls the inhibitory sensitivity of neuron
j . For all simulations, the amplitude of inhibition is fixed at
β1 = β2 = 0.35 ms−1
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Fig. 11 Mean bout time is plotted as a function of the time course
of inhibition for two different excitatory drives. The first excitatory
drive has standard strength and noisiness: M1 = M2 = M∗ and
N1 = N2 = N∗ (inhibitory sensitivity given by σ1 = σ2 =
0.56). The second excitatory drive has a lower strength and a higher

noisiness: M1 = M2 = 0.6M∗ and N1 = N2 = 3N∗ (inhibitory sen-
sitivity given by σ1 = σ2 = 0.2). Data shown are for neuron 1, but
since all parameters are symmetric mean bout times for neuron 2 are
the same. The right panel is a zoom-in of the left panel. Amplitude of
inhibition is fixed at β1 = β2 = 0.35 ms−1

P(τ > h′) ≈ e−λh′
and E(τ ; τ > h′) ≈

(
h′ + 1

λ

)
e−λh′

.

Substituting these in Eq. (7), we find that

E
(
TJ−1 + h′) ≈ E(τ )eλh′ − 1

λ
(8)

which shows the exponential growth of mean bout time
with h.

4.2 Pure escape case

We now turn to the mechanism of escape. In the excitation-
dominated bout regime, escape is dominant and a bout
switch is initiated by a sufficiently large positive fluctua-
tion in the excitatory drive to the suppressed neuron. To
construct our escape toy model, we invoke the pure escape
assumption: we will neglect the stochastic dynamics of the
inhibitory current to the silent cell (i.e, we will assume
that the active neuron spikes regularly with a fixed ISI and
delivers a periodic inhibitory current). This assumption is
consistent with our earlier discussion of the release ratio (in
which neuron f receives a flat excitatory drive and hence
spikes regularly when in a bout, delivering periodic inhibi-
tion to neuron n and forcing neuron n to escape to elicit a
bout switch).

Thus, within our escape toy model, the passive neuron
receives a periodically fluctuating inhibitory current, and
(since the excitatory drive to the active neuron is high within
an excitation-dominated bout regime, causing the active
neuron to fire at a high rate) the period of the inhibitory
current is on a time scale of a few milliseconds. Addition-
ally, the silent cell receives a noisy excitatory drive whose
time-averaged mean value is constant (with fluctuations
occurring on a time scale of a few milliseconds). It follows
that the only time dependence in the hazard rate (the instan-
taneous rate at which a bout switch can occur) is on a time

scale of a few milliseconds. The system therefore “remem-
bers” a history of at most a few milliseconds, and on the
time scale of bouts, the hazard rate is effectively constant.
An effectively constant hazard rate implies that bouts appear
exponentially distributed.

5 Discussion

In this work, we examined the distribution of bout durations
in a system consisting of two mutually inhibitory neurons
driven by noisy excitatory currents. We showed that strong
synaptic inhibition results in a bistable system, with noise
causing stochastic switching between stable states (i.e.,
alternating bouts of activity). We found that (in the param-
eter space where alternating activity bouts are observed),
an inhibition-dominated bout regime results in bout swithes
that are primarily a consequence of release from inhibition,
while within an excitation-dominated bout regime escape
via excitation is the dominant bout switching mechanism.
We also showed that bout length is always exponentially
distributed, and that inhibition exerts independent control of
bout duration (i.e., inhibition delivered by neuron j affects
the mean bout time of neuron j alone) while the excitatory
drive does not exhibit independent control of bout length
(i.e., changing the excitatory drive to neuron j alters the
mean bout time of both neurons).

Additionally, we found that while inhibitory amplitude
has little impact on bout duration, mean bout time is well-
described as an exponential function of the time course of
synaptic inhibition. We defined the growth rate of this expo-
nential for neuron j (σj ) as the inhibitory sensitivity of
neuron j , with a small inhibitory sensitivity indicating a
mean bout time that is robust to small changes in inhibitory
time course, and a large inhibitory sensitivity signifying
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delicate sensitivity of mean bout time to small fluctuations
in the time course of inhibition. We showed that the exci-
tatory drive is the sole determinant of inhibitory sensitivity,
and furthermore that the excitatory drive exerts indepen-
dent control over inhibitory sensitivity (i.e., the excitation to
neuron j modulates σj alone).

5.1 Sleep-wake cycling

The inspiration for this investigation arose from experi-
mental studies of sleep-wake cycling in young mammals:
at the neuronal level, bouts of sleep and wakefulness are
correlated with the activity of populations of ‘sleep-active’
and ‘wake-active’ brainstem neurons that may reciprocally
inhibit each other (Karlsson et al. 2005). In infant mam-
mals, bouts of sleep and wakefulness are exponentially
distributed, with the mean duration of sleep and wake bouts
increasing as the infant ages. Furthermore, sleep and wake
bouts are thought to be separately regulated—the mean
duration of sleep bouts is controlled independently from the
mean duration of wake bouts (Blumberg et al. 2005).

Our simple two-neuron system can provide qualitative
insights into some of the physiological mechanisms that
may underlie these experimental observations. The expo-
nential distribution of bout times arises naturally within our
system (as a consequence of the fact that the time course
of inhibition is always negligibly small compared to mean
bout time). Hence, we claim that to create memory within
the system and break the exponential distribution of bout
length multiple time scales of activity must exist—a single
time scale (e.g., a single time course of inhibition) is insuffi-
cient. Inhibition also provides a mechanism for independent
regulation of sleep and wake bouts—by unidirectional mod-
ification of the time course of inhibition, the mean duration
of sleep and wake bouts can be controlled separately. More-
over, independent control of inhibitory sensitivity by the
excitatory drive implies that as long as the strength of excita-
tion within the system is low but the noisiness is high, sleep
and wake bout durations can be independently controlled by
inhibition in a highly robust manner.

Of course, while the results obtained in this paper
can provide qualitative insights into basic principles that
may govern sleep-wake switching, a pair of mutually
inhibitory neurons is not a biologically realistic model of
the sleep-wake system. The brainstem sleep-wake system
likely consists of two mutually inhibitory populations of
neurons, and hence a realistic model would need to take
into account intra-population connectivity, inter-population
connectivity, and population sizes (though, unfortunately,
experimental data to guide such investigations is currently
scarce). A more realistic model of two mutually inhibitory
populations can then be used to provide quantitative (rather
than just qualitative) explanations of the sleep-wake data.

In preliminary investigations, we find that the general
principles obtained in our two-neuron system are equally
applicable to the case of two mutually inhibitory neuronal
populations.

In older mammals, however, experimental evidence
suggests that the duration of wake bouts develops a heavy-
tailed distribution (which resembles a power-law, though
controversy exists over whether the distribution is a true
power law), while the length of sleep bouts remains expo-
nentially distributed (Blumberg et al. 2005; Chu-Shore
et al. 2010). This qualitative transformation of the wake
bout distribution is thought to be due to the elaboration
of sleep-wake structures within the brain through devel-
opment, a likely candidate proposed by Gall et al. (2009)
being the locus coeruleus. Regardless of the exact neuronal
populations involved in the transformation, the results from
our two-neuron system suggest that these neuronal popula-
tions must introduce additional time scales into wake bout
dynamics in order to modify the exponential distribution of
wake bout duration.

Many existing models of sleep-wake cycling focus on
transitions between the sleep and wake states (or between
REM sleep and non-REM sleep) in adult mammals, where
the time scale of bouts is on the order of several hours.
These mathematical models range from utilizing statistical
approaches to employing constructions involving determin-
istic differential equations (Borbély et al. 1989; Lu et al.
2006; Phillips et al. 2010; Rempe et al. 2010; Robinson
et al. 2011). However, the rapid cycling between sleep
and wake states seen in infant mammals and the associ-
ated exponentially distributed bout durations cannot arise
in these deterministic models—random switching between
states requires a source of noise. Stochastic models which
have produced switching between sleep and wake states,
and for which the statistical distribution of bouts within the
model have been analyzed, can be found in Behn and Booth
(2011), Behn et al. (2008). Another approach that is capa-
ble of capturing stochastic switching is to model the spiking
activity of each of two interacting neuronal populations as
a doubly stochastic Poisson process, an approach that is
adopted by Joshi (2009). In the current paper, we address
the question of whether the random switching behavior sug-
gested by infant sleep-wake cycling can be generated within
a biophysical model; we show that, even though action
potentials occur on the time scale of ∼2 ms, our simple
two-neuron system is able to capture bout durations on time
scales of seconds to hundreds of seconds.
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arousal in sleep. Journal of Sleep Research, 13(1), 1–23.

Jalil, S., Belykh, I., Shilnikov, A. (2010). Fast reciprocal inhibition
can synchronize bursting neurons. Physical Review. E, Statistical,
Nonlinear, and Soft Matter Physics, 81, 045201.

Joshi, B. (2009). A doubly stochastic poisson process model for wake-
sleep cycling. Ph.D. thesis, The Ohio State University.

Karlsson, K., Kreider, J., Blumberg, M. (2004). Hypothalamic con-
tribution to sleep-wake cycle development. Neuroscience, 123(2),
575–582.

Karlsson, K., Gall, A., Mohns, E., Seelke, A., Blumberg, M. (2005).
The neural substrates of infant sleep in rats. PLoS Biology, 3(5),
e143.

Kirillov, A., Myre, C., Woodward, D. (1993). Bistability, switches
and working memory in a two-neuron inhibitory-feedback model.
Biological Cybernetics, 68, 441–449.

Kleitman, N., & Engelmann, T. (1953). Sleep characteris-
tics of infants. Journal of Applied Physiology, 6(5), 269–
282.

Lo, C., Nunes Amaral, L., Havlin, S., Ivanov, P., Penzel, T., Peter,
J., Stanley, H. (2002). Dynamics of sleep-wake transitions during
sleep. EPL (Europhysics Letters), 57, 625.

Lo, C., Chou, T., Penzel, T., Scammell, T., Strecker, R., Stanley, H.,
Ivanov, P. (2004). Common scale-invariant patterns of sleep–wake
transitions across mammalian species. Proceedings of the National
Academy of Sciencesof the United States of America, 101(50),
17545.

Lu, J., Sherman, D., Devor, M., Saper, C. (2006). A putative flip-
flop switch for control of rem sleep. Nature, 441(7093), 589–
594.

Ostojic, S. (2011). Interspike interval distributions of spiking neurons
driven by fluctuating inputs. Journal of Neurophysiology, 106(1),
361–373.

Phillips, A., Robinson, P., Kedziora, D., Abeysuriya, R. (2010). Mam-
malian sleep dynamics: how diverse features arise from a common
physiological framework. PLoS Computational Biology, 6(6),
e1000826.

Rempe, M., Best, J., Terman, D. (2010). A mathematical model of the
sleep/wake cycle. Journal of Mathematical Biology, 60(5), 615–
644.

Robinson, P., Phillips, A., Fulcher, B., Puckeridge, M., Roberts, J.
(2011). Quantitative modelling of sleep dynamics. Philosophical
Transactions of the Royal Society A: Mathematical Physical and
Engineering Sciences, 369(1952), 3840–3854.

Rowat, P., & Selverston, A. (1997). Oscillatory mechanisms in pairs
of neurons connected with fast inhibitory synapses. Journal of
Computational Neuroscience, 4, 103–127.

Skinner, F., Kopell, N., Marder, E. (1994). Mechanisms for oscil-
lation and frequency control in reciprocally inhibitory model
neural networks. Journal of Computational Neuroscience, 1,
69–87.

Tao, L., Shelley, M., McLaughlin, D., Shapley, R. (2004). An egalitar-
ian network model for the emergence of simple and complex cells
in visual cortex. Proceedings of the National Academy of Sciences,
101, 366–371.

Terman, D., Kopell, N., Bose, A. (1998). Dynamics of two mutually
coupled slow inhibitory neurons. Physica D, 117, 241–275.

Van Vreeswijk, C., Abbott, L., Ermentrout, G. (1994). When inhibition
not excitation synchronizes neural firing. Journal of Computa-
tional Neuroscience, 1, 313–321.

Wang, X., & Rinzel, J. (1992). Alternating and synchronous rhythms
in reciprocally inhibitory model neurons. Neural Computation, 4,
84–97.


	Switching mechanisms and bout times in a pair of reciprocally inhibitory neurons
	Abstract
	Introduction
	Model
	Membrane potential
	Excitatory drive
	Synaptic inhibition
	Bouts

	Results
	Bistability and stochastic switching
	Exponential distribution of bout length
	Escape vs. release
	Control of mean bout time
	Inhibitory sensitivity

	Mathematical insights
	Pure release case
	Pure escape case

	Discussion
	Sleep-wake cycling

	Acknowledgments
	Conflict of interest
	References


