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a b s t r a c t 

Reciprocal inhibition is a common motif exploited by neuronal networks; an intuitive and tractable way 

to examine the behaviors produced by reciprocal inhibition is to consider a pair of neurons that synap- 

tically inhibit each other and receive constant or noisy excitatory driving currents. In this work, we ex- 

amine reciprocal inhibition using two models (a voltage-based and a current-based integrate-and-fire 

model with instantaneous or temporally structured input), and we use analytic and computational tools 

to examine the bifurcations that occur and study the various possible monostable, bistable, and tristable 

regimes that can exist; we find that, depending on system parameters (and on choice of neuron model), 

there can exist up to 3 distinct monostable regimes (denoted M0, M1, M2), 3 distinct bistable regimes 

(denoted B, B1, B2), and a single tristable regime (denoted T). We also find that synaptic inhibition exerts 

independent control over the two neurons – inhibition from neuron 1 to neuron 2 governs the spiking 

behavior of neuron 2 but has no impact on the spiking behavior of neuron 1 (and vice versa). The excita- 

tory driving current, however, does not exhibit this property – the excitatory current to neuron 1 affects 

the spiking behavior of both neurons 1 and 2 (as does the excitatory current to neuron 2). Furthermore, 

we develop a methodology to examine the behavior of the system when the excitatory driving currents 

are allowed to be noisy, and we investigate the relationship between the behavior of the noisy system 

with the stability regime of the corresponding deterministic system. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Reciprocal inhibition is an architectural motif commonly em-

ployed by the brain in a diverse array of computational tasks.

For example, the reciprocal inhibition architecture arises in neu-

ral systems that underlie animal locomotion ( Friesen, 1994 ), sleep-

wake cycling ( Hobson et al., 1975 ), REM-non REM sleep switch-

ing ( Lu et al., 2006 ), binocular rivalry ( Seely and Chow, 2011 ), and

visual stimulus selection ( Mysore and Knudsen, 2012 ). A detailed

study of the dynamical behavior of mutually inhibitory neurons

may therefore provide valuable insight into the computations per-

formed by these various brain systems. 

A mathematically tractable and intuitively transparent method-

ology for investigating reciprocal inhibition is to consider a simpli-

fied model of a pair of mutually inhibitory neurons, each of which

receives an excitatory driving current ( Fig. 1 ). Even such a simple

dynamical system can exhibit a rich repertoire of dynamical be-

haviors. Depending on system parameters, the system may display
∗ Corresponding author. 
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ne of two broad classes of steady-state behavior – the system can

xhibit either monostability or bistability. 

The dynamics of reciprocally connected inhibitory neurons, in

he case that the parameters of synaptic inhibition are symmetric

etween the two cells, has been explored extensively in prior in-

estigations. Mutually weak inhibition results in oscillatory spiking

nd a monostable system – both neurons fire in a periodic fashion,

ith the precise nature of the periodic behavior, and the spiking

elationship between the two neurons, depending on the details of

ystem parameters. Strong inhibition between a pair of symmetri-

ally coupled neurons, on the other hand, can result in bistability

one neuron spikes at a fixed frequency while the other displays

ubthreshold oscillations for all time, with the identities of the

ctive and suppressed cells determined by the initial conditions.

hus, one stable state consists of the first neuron firing with the

econd neuron silent, and the other stable state consists of the sec-

nd neuron firing with the first neuron silent ( Elson et al., 2001;

alil et al., 2010; Kirillov et al., 1993; Rowat and Selverston, 1997;

kinner et al., 1994; Terman et al., 1998; Van Vreeswijk et al., 1994;

ang and Rinzel, 1992 ). 

https://doi.org/10.1016/j.jtbi.2017.12.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.12.011&domain=pdf
mailto:mjpatel@wm.edu
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Fig. 1. Schematic of the dynamical system. The system consists of two mutually 

inhibitory neurons, each of which receives a constant excitatory driving current. 
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However, the transition from monostability to bistability as sys-

em parameters are varied, and the nature of the existing sta-

le state(s), has not, to our knowledge, yet received a thorough

heoretical investigation in the case that asymmetric coupling be-

ween the two mutually inhibitory neurons is allowed. In this

ork, we provide analytical and computational results on the exis-

ence of monostability versus bistability and the nature of the sta-

le state(s) present as system parameters are varied in a pair of re-

iprocally inhibitory neurons in which asymmetry is permitted in

ll system parameters. Furthermore, in a deterministically bistable

ystem, the addition of noise to the excitatory driving currents

ields alternating bouts of spiking activity ( Patel and Joshi, 2014 ),

hile in a monostable system noisy excitation results in two neu-

ons that spike concurrently; we therefore also provide a method-

logy for assessing in a noisy system whether or not alternating

ctivity bouts are occurring. 

In the deterministic setting, when each neuron is capable of

piking continuously when uncoupled, there are three distinct

odes of behavior that the coupled system can exhibit: after pos-

ibly a finite amount of time has passed: (0) both neuron 1 and

euron 2 actively spike for all time, (1) neuron 1 is active and neu-

on 2 is quiescent for all time, (2) same as (1) with the roles of

eurons 1 and 2 switched. If a behavioral mode persists under a

erturbation, we will refer to it as a stable mode. It is to be noted

hat a stable mode may correspond to multiple stable solutions of

he dynamical system – for instance, in the stable mode (0) when

he two neurons are simultaneously active, there might be two dis-

inct stable solutions corresponding to distinct phase differences

n the spike times of the two neurons. Thus, a stable mode (0),

1), or (2) is a set of one or more stable solutions with the pre-

cribed property, instead of a single solution of the dynamical sys-

em. For a fixed set of parameters such that the neurons spike con-

inuously when uncoupled, one or more of the three possible sta-

le modes may exist, and the system will converge to a solution

n one of the available modes depending on the initial conditions.

hen only one stable mode is available, we say that the set of pa-

ameters is in the monostable regime – M0, M1, or M2 – depend-

ng on which of the three modes is available, respectively. When

wo of the three modes are available, we say the system is in a

istable regime, and when all three modes are available, we say

hat the system is tristable. We emphasize that when we refer to

he system as being in a monostable, bistable, or tristable regime,

e are referring to the number of stable modes available, not nec-

ssarily to the number of stable solutions available. This is because,

s discussed above, the stable mode (0) may in fact correspond to

ore than one stable solution of the dynamical system (the stable

odes (1) and (2), on the other hand, each always correspond to a

ingle stable solution). 

We will employ two neuron models to describe our pair of re-

iprocally inhibitory neurons. In the first model, which we refer

o as the voltage-based integrate-and-fire model ( Stein, 1965 ), an

ncoming inhibitory spike has the effect of causing an instanta-

eous jump in the membrane potential from V to V − ρ ( ρ > 0),

hile in the second model, which we refer to as the current-based

ntegrate-and-fire model, the effect of an incoming inhibitory spike
s to cause a change in 

˙ V in the form of a rectangular pulse. Thus,

n the first model, the subthreshold membrane potential V has

 discontinuity when the other neuron spikes and inputs are in-

tantaneous, while in the second model subthreshold V is contin-

ous but ˙ V has a discontinuity and inputs are temporally struc-

ured. While the voltage-based integrate-and-fire model is more

menable to a thorough mathematical treatment, the current-

ased integrate-and-fire model provides a more realistic represen-

ation of synaptic input (since synaptic inputs are temporally struc-

ured). We describe and analyze each model in detail, and we show

hat temporal structuring of synaptic input has a significant quali-

ative impact on the range of dynamical behaviors available to the

wo-neuron system. In particular, we find that temporally struc-

ured synaptic input (as opposed to modeling of synaptic input as

nstantaneous) expands the number of stable modes that the two

eurons can exhibit within a parameter regime, suggesting that

ynaptic temporal dynamics can have a significant impact on the

ynamical behaviors of a network. Finally, using the current-based

ntegrate-and-fire model, we develop a methodology to assess the

xistence of alternating activity bouts in the two-neuron system in

he case that external inputs to the two neurons are permitted to

e noisy, and we discuss the application of this to the investigation

f sleep-wake cycling behavior in infant mammals. 

. Stability regimes 

In this paper, we study the dynamics of two neurons that are

utually inhibiting; each of these neurons receives enough exter-

al excitation to fire actively for all time, when uncoupled. Given

uch a model, with fixed set of parameters and initial conditions

ithin the model, we are interested in determining the range of

ynamical behaviors. Possibly after an initial transient lasting for

 finite time, either (i) one of the two neurons fires actively for

ll time while the other neuron is quiescent for all time, or (ii)

oth neurons fire actively for all time. The main goal of this pa-

er is to elucidate the different behaviors within a model as sys-

em parameters and initial conditions are varied. Specifically, we

how that the set of available dynamical behaviors are different

etween a voltage-based integrate-and-fire model and a current-

ased integrate-and-fire model, with the latter exhibiting a much

ider range of behaviors owing to the time course of inhibition

hat is present in the latter model but not in the former. 

Consider the case where all the parameter values within the

odel are fixed. The spiking dynamics of the two neurons are

ompletely determined within an integrate-and-fire model by the

air of voltages ( V 1 ( t ), V 2 ( t )). Suppose that the allowed set of ini-

ial conditions for the pair of voltages is I ⊆ R 

2 , i.e. (v 1 , v 2 ) :=
(V 1 (0) , V 2 (0)) ∈ I . Then we can partition I based on the eventual

ynamics of the system starting at the point ( v 1 , v 2 ) as follows. If

euron i is eventually quiescent, possibly after firing a finite num-

er of times, then we let (v 1 , v 2 ) ∈ Q i . On the other hand, if neu-

on i is not eventually quiescent, we say that (v 1 , v 2 ) ∈ Q 

c 
i 

= I \ Q i .

very initial voltage ( v 1 , v 2 ) belongs to one and only one of the

ollowing sets: Q 1 ∩ Q 2 , Q 1 ∩ Q 

c 
2 
, Q 

c 
1 

∩ Q 2 , and Q 

c 
1 

∩ Q 

c 
2 
. In fact,

ince we are assuming for all models under study that both neu-

ons receive enough excitation to spike when uncoupled, Q 1 ∩ Q 2 

s empty for all parameter values. This is because when both neu-

ons are quiescent, the system is effectively uncoupled since no

nhibition is being sent from one neuron to another and so one

f the two neurons must spike eventually. Thus for any given set

f parameters, there exist at most three distinct available modes :

 1 ∩ Q 

c 
2 
, Q 

c 
1 

∩ Q 2 , and Q 

c 
1 

∩ Q 

c 
2 
, i.e. the set of initial conditions I is

artitioned into Q 1 ∩ Q 

c 
2 
, Q 

c 
1 

∩ Q 2 , and Q 

c 
1 

∩ Q 

c 
2 
. Furthermore, we

ay that a mode is stable if it contains an open disk in R 

2 . 

A point in parameter space is said to belong to one of the

egimes M 0, M 1, M 2, B, B 1, B 2, or T depending on which modes
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are nonempty (i.e. available) and are stable. We give below a de-

scription of each of these regimes. 

1. Monostable regime M 0: the set of stable modes is {Q 

c 
1 

∩ Q 

c 
2 
} .

For all initial conditions, both neurons are active for all time. 

2. Monostable regime M 1: the set of stable modes is {Q 

c 
1 

∩ Q 2 } .
For all initial conditions, neuron 1 is active for all time while

neuron 2 is quiescent for all time (after possibly firing finitely

many spikes). 

3. Monostable regime M 2: the set of stable modes is {Q 1 ∩ Q 

c 
2 
} .

For all initial conditions, neuron 2 is active for all time while

neuron 1 is quiescent for all time (after possibly firing finitely

many spikes). 

4. Bistable regime B : the set of stable modes is {Q 

c 
1 

∩ Q 2 , Q 1 ∩
Q 

c 
2 
} . There exists a nonempty open disk of initial conditions

which lead to neuron 1 active and neuron 2 quiescent for all

time, there also exists a disjoint open disk of initial conditions

which eventually leads to neuron 2 active and neuron 1 quies-

cent for all time, and there are no other stable modes. 

5. Bistable regime B 1: the set of stable modes is {Q 

c 
1 

∩ Q 2 , Q 

c 
1 

∩
Q 

c 
2 
} . There exists a nonempty open disk of initial conditions

which eventually leads to neuron 1 active and neuron 2 quies-

cent for all time, there also exists a disjoint open disk of initial

conditions which lead to neurons 1 and 2 being simultaneously

active for all time, and there are no other stable modes. 

6. Bistable regime B 2: the set of stable modes is {Q 1 ∩ Q 

c 
2 
, Q 

c 
1 

∩
Q 

c 
2 
} . There exists a nonempty open disk of initial conditions

which lead to neuron 2 active and neuron 1 quiescent for all

time, there also exists a disjoint open disk of initial conditions

which lead to neurons 1 and 2 being simultaneously active for

all time, and there are no other stable modes. 

7. Tristable regime T : the set of stable modes is {Q 

c 
1 

∩ Q 2 , Q 1 ∩
Q 

c 
2 
, Q 

c 
1 

∩ Q 

c 
2 
} . There exist three disjoint nonempty open disks

of initial conditions, one leads to neuron 1 active and neuron 2

quiescent for all time, another to neuron 2 active and neuron 1

quiescent for all time, a third to both neurons firing actively for

all time, and there are no other stable modes. 

3. Voltage-based I&F Model 

For i, j ∈ {1, 2} such that i � = j , the dynamics for the subthreshold

membrane potential of a pair of voltage-based integrate-and-fire

neurons ( Stein, 1965 ) that mutually inhibit each other is given by 

˙ 
 i = −gV i + αi 

(V i (t) = 1 and V j (t) < 1) ⇒ (V i (t + ) = 0 , V j (t + ) = V j (t) − ρi ) 

(V 1 (t) = 1 and V 2 (t) = 1) ⇒ ((V 1 (t + ) , V 1 (t + )) = (−ρ2 , −ρ1 )) 
(1)

where initial voltages are assumed to be V 1 (0) ≤ 1, V 2 (0) ≤ 1. Here g

is the synaptic conductance and αi is a constant excitatory current

applied to neuron i . When the membrane potential V i of neuron i

reaches the spiking threshold of 1, it is immediately reset to 0, and

we say that neuron i spikes at that time. We assume that αi > g

so that in the absence of inhibition, each neuron is actively spiking

with a period of T i = − ln (1 − g/αi ) /g. ρ i > 0 is the strength of inhi-

bition from neuron i to neuron j . When neuron j spikes, the other

neuron i � = j receives an inhibitory impulse and its membrane po-

tential jumps down by an amount ρ j . When both neurons spike

together, we assume that both neurons are reset to 0 and they

both receive an inhibitory impulse from the other neuron. In other

words, immediately after the simultaneous spikes, the membrane

potentials are reset to (V 1 , V 2 ) = (−ρ2 , −ρ1 ) . 

Let t 0 , t 1 , t 2 , . . . be the sequence of spiking times; in other

words, at time t k one of the two neurons (or both neurons) spike.

In this model, the jumps in V are downward only, since all jumps
i 
rise from either an inhibitory impulse or from reset to V i = 0 af-

er neuron i has spiked. From this observation, it is clear that for

ll initial conditions V 1 (0) ≤ 1, V 2 (0) ≤ 1, it is the case that V 1 ( t ) ≤ 1,

 2 ( t ) ≤ 1 for all time t ≥ 0. Thus, for some w < 1, the pair of mem-

rane potentials of the two neurons at each spike time t k takes one

f the following forms: 

(V 1 (t k ) , V 2 (t k )) = 

{ 

(w, 1) if neuron 2 spikes at time t k , 
(1 , w ) if neuron 1 spikes at time t k , 
(1 , 1) if both neurons spike at time t k . 

We show in this section that the only stable modes for model

1) are M0, M1, M2, and B. The main result of this section,

heorem 3.9 , characterizes the suite of possible behaviors includ-

ng the precise dependence on parameter values. 

We define the two-dimensional Poincare map to be the pair

f membrane potentials at the spike times t k 
→ v k := ( V 1 ( t k ), V 2 ( t k ))

or k ∈ { 0 , 1 , 2 , . . . } . For instance, if at time t k , neuron 2 spikes but

ot neuron 1 then the state of the system at this time is v k =
(V 1 (t k ) , V 2 (t k )) = (w k , 1) with w k < 1. More precisely, the Poincare

ap is defined as follows: 

efinition 3.1. Let (t 0 , t 1 , t 2 , . . . ) be a sequence such that 

1. 0 < t 0 < t 1 < t 2 < . . . . 

2. 

max (V 1 (t) , V 2 (t)) 

{
= 1 , if t = t k 
< 1 , if t � = t k 

We define the system spike map by v k = (V 1 (t k ) , V 2 (t k )) for k =
 , 1 , 2 , . . . . 

efinition 3.2. For j ∈ {1, 2} such that j � = i , 

(i) define the headstart phase for neuron i , w̄ i to be 

w̄ i := ρ j + 

1 − αi /α j 

1 − g/α j 

and, 

ii) define the limiting phase for neuron i, w ∞ , i to be 

w ∞ ,i := 

αi 

g 
+ ρ j 

(
1 − α j 

g 

)
. 

Suppose at time t k neuron 2 spikes but not neuron 1;

emma 3.3 determines whether neuron 1 or neuron 2 will spike

t time t k +1 based on the membrane potential of neuron 1 at time

 k . 

emma 3.3. If v k = (w, 1) with 

 

{ 

< w̄ 1 , neuron 2 spikes but not neuron 1 at time t k +1 

= w̄ 1 , both neurons spike at time t k +1 

> w̄ 1 , neuron 1 spikes but not neuron 2 at time t k +1 

roof. Between spikes, both V 1 ( t ) and V 2 ( t ) are increasing func-

ions that are solutions to autonomous differential equations. We

nly need to show that if w = w̄ 1 , then both neurons reach

he spiking threshold V = 1 at the same time. The subthresh-

ld membrane potential for 2 in the time interval (t k , t k +1 ) is

asily solved to be V 2 (t) = 

α2 
g 

(
1 − e −g(t−t k ) 

)
. Similarly, we solve

or the subthreshold membrane potential of 1 in the same

ime interval (t k , t k +1 ) , V 1 (t) = 

1 
g 

(
α1 − (α1 − g(w − ρ2 )) e 

−g(t−t k ) 
)

=
α1 
α2 

V 2 (t) + (w − ρ2 ) 
(

1 − g 
V 2 (t) 
α2 

)
, where we rewrote V 1 ( t ) in terms

f V 2 ( t ). For w = w̄ 1 , we have 

 1 (t) = 

α1 

α2 

V 2 (t) + 

1 − α1 /α2 

1 − g/α2 

(
1 − g 

V 2 (t) 

α2 

)
or α1 > g , it is easy to see that V 2 = 1 if and only if V 1 = 1 in the

bove expression. �
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We assume without loss of generality that neuron 2 spikes at

ime t k and let v k := ( w k , 1). First we consider the case w k < w̄ 1 ,

o that neuron 2 spikes again at time t k +1 and we let v k +1 :=
(w k +1 , 1) . In the next lemma, we determine w k +1 as a function of

 k . 

emma 3.4. If v k := ( w k , 1) with w k < w̄ 1 , then v k +1 = (w k +1 , 1)

ith 

 k +1 = 

α1 

α2 

+ (w k − ρ2 ) 
(

1 − g 

α2 

)
roof. Since w k < w̄ 1 , neuron 2 will spike and neuron 1 will not

pike at time t k +1 . We first find the time to spiking t k +1 − t k for

euron 2 by elementary integration. Then we calculate the sub-

hreshold membrane potential of neuron 1 at t k +1 by performing

nother simple integration over the time interval (t k , t k +1 ) with

he initial condition V 1 (t k ) = w k − ρ2 . This immediately gives the

tated result. �

The map w k 
→ w k +1 appearing in Lemma 3.4 can be solved ex-

licitly. 

emma 3.5. Consider the one-dimensional map defined by w k +1 =
α1 
α2 

+ (w k − ρ2 ) 
(

1 − g 
α2 

)
. Then for n ∈ Z ≥0 , w n = w ∞ , 1 + (w 0 −

 ∞ , 1 ) 
(

1 − g 
α2 

)n 

. 

roof. Since w k +1 = f (w k ) is a linear map, it can be solved explic-

tly by summing a finite geometric series. �

The previous lemma provides the reason for naming w ∞ , i as

he limiting phase of neuron i . Suppose we start with the initial

ondition v 0 = (w 0 , 1) with w 0 < 1. Let N be the smallest integer

ith the property that w N > w̄ 1 , then either the first N or N − 1

pikes (depending on whether w N < 1 or w N > 1) will arise in neu-

on 2, and the following spike will arise in neuron 1. It is easy to

ee that w n in the previous lemma is a monotone sequence con-

erging to w ∞ , 1 . It follows then that if w ∞ , 1 ≤ w̄ 1 then neuron 2

ill remain actively spiking for all time while neuron 1 will re-

ain quiescent for all time. On the other hand, if w ∞ , 1 > w̄ 1 , then

euron 1 will fire a spike after a finite time interval. Let �2 , 1 :=
ρ2 (α2 − g) 

α1 − g 
and �1 , 2 := 

ρ1 (α1 − g) 

α2 − g 
. We note that �1, 2 , �2, 1 > 0,

ince the excitatory currents satisfy α1 > g, α2 > g . 

roposition 3.6. Suppose that neuron 2 fires and neuron 1 does not

re initially, so that v 0 = (w 0 , 1) with w 0 < 1 . Then neuron 1 will fire

fter a finite time interval if and only if ρ2 < 

α1 − g 

α2 − g 
or equivalently

1, 2 < 1 . 

roof. Neuron 1 will fire after a finite time interval if and only if

he limiting phase of neuron 1 is strictly greater than the headstart

hase of neuron 1, w ∞ , 1 > w̄ 1 . The result follows on simplifying

his condition. �

Proposition 3.6 states that if �1, 2 < 1, then neuron 1 cannot be

uppressed, irrespective of the initial conditions. Clearly w ∞ , 1 > 1

s sufficient for neuron 1 to spike after a finite time interval. The

ext result shows that this condition is necessary as well. 

emma 3.7. If w ∞ ,i > w̄ i then w ∞ ,i > 1 > w̄ i . If w ∞ ,i < w̄ i then

 ∞ ,i < 1 < w̄ i . 

roof. After some algebra, we write w̄ i as a function of w ∞ , i , 

¯
 i = 

α j − gw ∞ ,i 

α j − g 

f w ∞ , i < 1 then w̄ i > 1 and if w ∞ , i > 1 then w̄ i < 1 , from which

he result follows: �
This shows that if initially neuron 2 is spiking but neuron 1 is

uiescent, and if w ∞ , 1 ≤ 1, then neuron 1 will remain quiescent for

ll time. On the other hand, if w ∞ , 1 > 1, then neuron 1 will spike

fter a finite time interval. Now we can state our two main results.

heorem 3.8. For model (1) , consider the initial condition v 0 =
(w 0 , 1) with w 0 < 1 . Let γ := 

α1 − g 

α2 − g 
. 

1. If ρ2 ≥γ then neuron 1 will remain quiescent for all time. 

2. If ρ2 < γ , then w ∞ , 1 > 1 and the first spike in neuron 1 will occur

at time t N where N is given by 

N = 

⌈ 

log (w ∞ , 1 − 1) − log (w ∞ , 1 − w 0 ) 

log 
(
1 − g 

α2 

) ⌉ 

(2) 

roof. By Lemma 3.5 , w n = w ∞ , 1 + (w 0 − w ∞ , 1 ) 
(

1 − g 
α2 

)n 

where

 n is the membrane potential of neuron 1 assuming that neuron 2

pikes but neuron 1 does not spike up to time t n . If ρ2 < γ , then

here exists an N such that w N ≥ 1 but w N−1 < 1 . Then N = min { n :
 n > 1 } from which the result follows. �

The next result, which is the main theorem of this section,

hows that for the voltage-based integrate-and-fire model, the only

tability regimes are the monostable regimes M0, M1, M2 and the

istable regime B. The impossibility of B1, B2 and T is due to the

act that if Q 

c 
1 

∩ Q 2 is a stable mode and neuron 1 fires at least

ne spike, then neuron 2 will be quiescent for all time, thus rul-

ng out the co-existence of the stable mode Q 

c 
1 

∩ Q 

c 
2 
. By similar

easoning, the stable mode Q 

c 
1 

∩ Q 

c 
2 

cannot co-exist with the sta-

le mode Q 1 ∩ Q 

c 
2 

in model (1) . Thus, B1, B2 and T are ruled out

or the voltage-based integrate-and-fire model. We will show in

he next section that the non-instantaneous inhibition time in the

urrent-based integrate-and-fire model does allow for B1, B2 and

. 

heorem 3.9. Consider model (1) of a reciprocally inhibiting pair of

eurons and let �2 , 1 = 

ρ2 (α2 −g) 
α1 −g and �1 , 2 = 

ρ1 (α1 −g) 
α2 −g . 

1. If �2, 1 ≥ 1 > �1, 2 , then the system is monostable – type M1, i.e.

for all initial conditions, neuron 1 is active for all time while neu-

ron 2 is quiescent for all time (after possibly firing finitely many

spikes). 

2. If �1, 2 ≥ 1 > �2, 1 , then the system is monostable – type M2, i.e.

for all initial conditions, neuron 2 is active for all time while neu-

ron 1 is quiescent for all time (after possibly firing finitely many

spikes). 

3. If �2, 1 < 1 and �1, 2 < 1, then the system is monostable – type M0,

i.e. for all initial conditions, both neurons remain actively firing for

all time. 

4. If �2, 1 ≥ 1 and �1, 2 ≥ 1, then the neuron that fires the first spike

remains active for all time, while the other neuron remains quies-

cent for all time. If both neurons fire the first spike together, then

whichever neuron fires the second spike remains active for all time,

while the other neuron remains quiescent for all time after the first

spike. If both neurons fire the first two spikes together, then both

neurons fire simultaneously for all time. In other words, the system

is bistable – type B. 

roof. �2, 1 ≥ 1 > �1, 2 . By Theorem 3.8 , for all initial conditions,

euron 1 will spike after a finite time interval, after which neuron

 will be quiescent for all time. The second case is similar with

oles of 1 and 2 interchanged. In the third case, neither neuron

upplies sufficient inhibition to keep the other neuron quiescent,

ven when firing at its uncoupled frequency. When coupled, and

hen both neurons are active, the firing frequency of each neu-

on is lowered and thus the timed-averaged inhibition that it pro-

ides the other neuron is also lowered. Thus both neurons remain
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Fig. 2. The values of �1, 2 and �2, 1 determine the stability regime M 0, M 1, M 2, B of 

the system. The four stable modes provide a full classification of the voltage-based 

integrate-and-fire model. 
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D  
actively firing for all time. In the fourth case, both neurons sup-

ply sufficient inhibition to keep the other neuron quiescent, thus

whichever neuron fires first will remain active for all time while

the other neuron will remain quiescent for all time. �

For a bistable system B, we partition the set of initial conditions

into regions where: (i) neuron 1 is active for all time and neuron

2 is quiescent for all time (possibly after an initial transient), and

another region where (ii) neuron 2 is active for all time and neu-

ron 1 is quiescent for all time (possibly after an initial transient).

Between these two stable regions, there is an unstable region (i.e.

one that does not contain an open disk) where both neurons fire

simultaneously for all time ( Fig. 2 ). 

Proposition 3.10. Consider model (1) of a reciprocally in-

hibiting pair of neurons and suppose that �2 , 1 = 

ρ2 (α2 −g) 
α1 −g ≥ 1

and �1 , 2 = 

ρ1 (α1 −g) 
α2 −g ≥ 1 . Suppose that initially (V 1 (0) , V 2 (0)) =

(u 1 , u 2 ) ∈ (−∞ , 1) × (−∞ , 1) . Let i, j ∈ {1, 2} with i � = j. Then the

following holds: 

1. Suppose that 

α j − gu j 

α j − g 
< 

αi − gu i 

αi − g 
. (3)

Then neuron j is active for all time, and neuron i is quiescent for

all time. 

2. Suppose that 

α j − gu j 

α j − g 
= 

αi − gu i 

αi − g 

α j + gρi 

α j − g 
< 

αi + gρ j 

αi − g 
(4)

Then neuron i and neuron j fire the first spike simultaneously, then

neuron j is active for all time, and neuron i is quiescent for all time

after the first spike. 

3. Suppose that 

α j − gu j 

α j − g 
= 

αi − gu i 

αi − g 

α j + gρi 

α j − g 
= 

αi + gρ j 

αi − g 
(5)

Then neuron i and neuron j remain active for all time and the two

neurons always spike simultaneously. 

Proof. Since �2, 1 ≥ 1 and �1, 2 ≥ 1, the system is bistable – type

B . Suppose that (V 1 (0) , V 2 (0)) = (u 1 , u 2 ) . The time to first spike in

the absence of inhibition for neuron i ∈ {1, 2} is σi = − 1 
g ln 

(
αi −g 

αi −gu i 

)
.

If neuron i fires before the other neuron j , i.e. σ i < σ j , then neuron

i remains actively firing for all time and neuron j remains quies-

cent for all time. The condition in (3) is equivalent to σ i < σ j . This

proves part (1) of the statement. 
Suppose now that 
α j −gu j 
α j −g = 

αi −gu i 
αi −g . In that case, both neurons i

nd j fire the first spike together. After this spike, neuron 1 is reset

f −ρ2 and neuron 2 is reset to −ρ1 . In this case, we simply apply

3) with u 1 = −ρ2 and u 2 = −ρ1 to determine which neuron fires

he next spike. If neuron i fires before neuron j , then i remains

ctive for all time and j remains quiescent for all time. This proves

art (2) of the statement. 

Finally, suppose that the condition in (5) holds. Then the neu-

ons fire the first and the second spike simultaneously, after which

heir voltages are reset to (−ρ2 , −ρ1 ) . Since these are the same

nitial voltages after the first spike, the two neurons continue to

pike simultaneously for all time thereafter. This proves part (3) of

he statement. �

Thus, for the voltage-based integrate-and-fire model, we get a

ull classification of long-term dynamical behaviors and the pre-

ise dependence of these dynamics on the system parameters. We

ill see that the dynamic range of behaviors is enlarged when we

ove to a more realistic current-based integrate-and-fire model in

he next section. Specifically, all seven stability regimes ( M 0, M 1,

 2, B, B 1, B 2, T ) will be shown to exist. 

. Current-based I&F Model 

An alternative to the voltage-based integrate-and-fire model is a

urrent-based model where an inhibitory current lasts over a posi-

ive time interval. Each neuron is modeled as an integrate-and-fire

euron; the membrane potential of neuron j ( j ∈ {1, 2}) is governed

y the following equation: 

dV j 

dt 
= −gV j + α j − I j (t) , where 

I j (t) = β j 

∑ 

i 

(H(t − τ i 
k ) − H(t − τ i 

k − h j )) 

 j (t) = 1 ⇒ { V j (t + ) = 0 } (6)

here V j ( t ) is the membrane potential, and g = 0 . 05 is the leak

onductance. The model is reduced dimensional, with a nondimen-

ional membrane potential, time in units of ms, and conductance

n units of ms −1 . A spike is recorded when V j ( t ) reaches a thresh-

ld value E thresh = 1 , with V j ( t ) being instantaneously reset to the

est potential of 0 following a spike. Details of the reduced dimen-

ional model are given in Tao et al. (2004) . An absolute refractory

eriod of r = 2 ms is simulated by holding the membrane potential

t rest for r = 2 ms following a spike. For computational results,

imulations were carried out using the explicit Euler method with

 time step of 0.0 0 01ms (the small time step is needed for precise

esolution of analytically computed bifurcation points). 

Each neuron receives a constant excitatory current given by the

alue αj . Synaptic inhibition is current-based and modeled through

he I j ( t ) term. If neuron k � = j spikes at time τ k , then I j ( t ) is incre-

ented by an amount β j at time τ k and decremented by β j at

ime τk + h j . We refer to β1 , β2 as the amplitude of inhibition of

eurons 1 and 2 respectively, and we refer to h 1 , h 2 as the time

ourse of inhibition of neurons 1 and 2, respectively. H represents

he Heaviside step function, τ 1 
k 
, τ 2 

k 
, τ 3 

k 
, . . . are the spike times of

he neuron k . 

We considered an alternate model, where the inhibitory current

umps up by a fixed amount β j as in (6) , and the current I j ( t ) de-

ays exponentially between jumps. 

˙ 
 j = −gV j − I j (t) + α j 

˙ I j = −I j / ̃ h j + β j 

∑ 

i 

δ(t − τ i 
k ) (7)

Here ˜ h j represents the current decay time, and δ represents the

irac delta. We present the analytical results obtained for model
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n (6) , and will make no further mention of the model in (7) , since

he results for the two models are quite analogous. 

At a steady state, each neuron is either actively spiking for all

ime or quiescent for all time based on the balance between ex-

itation and inhibition that the neuron receives. If a neuron, say

euron 1, receives enough excitation to overcome the maximum

nhibition that the other neuron (neuron 2) delivers, then neu-

on 1 will continue to spike for all time. The maximum spiking

requency of neuron 2 occurs when neuron 2 receives no inhibi-

ion from neuron 1. Reasoning similarly to Section 3 , under the as-

umption that α2 > g and no inhibition, neuron 2 spikes with pe-

iod T 2 = − ln (1 − g/α2 ) /g, or if we impose a post-spike refractory

eriod of r > 0, T 2 = r − ln (1 − g/α2 ) /g. Thus neuron 1 receives an

nhibitory current I 1 with period T 2 . 

We assume, without loss of generality, that neuron 2 spikes

t times kT 2 , where k ∈ Z . In order to determine the subthresh-

ld membrane potential of neuron 1 under the periodic inhibitory

urrent from neuron 2, we solve (6) or equivalently: 

˙ V = −gV + α − I(t) 

(t) = 

{
(n + 1) β, kT ≤ t ≤ kT + h − nT 
nβ, kT + h − nT ≤ t < (k + 1) T 

(k ∈ Z ) (8) 

here we suppressed the indices labeling the neurons, and

 := 
 h / T � . 
roposition 4.1. Consider a neuron whose membrane potential is

overned by (8) . For all initial conditions V (0) < 1, the neuron will

ontinue to spike for all time (after some initial transient) if the fol-

owing condition is satisfied: 

− g ≥ β

[
n + 

e g(h −nT ) − 1 

e gT − 1 

]
, (9) 

here n = 
 h T � . 
roof. We prove the contrapositive. Suppose that neuron 1 is qui-

scent for all time, i.e. lim sup t∈ R V (t) < 1 . Let ˜ V (t) denote the

teady state membrane potential. From (8) , ˜ V (t) is periodic with

eriod T , and for all k ∈ Z , ˜ V (t) is monotone on [ kT , kT + h −
T ] and on [ kT + h − nT , (k + 1) T ] . Since the inhibitory current

n the former interval is (n + 1) β, which is greater than that

n the latter interval n β , it follows that ˜ V (t) is decreasing on

he former interval and increasing on the latter interval. There-

ore, lim sup t∈ R V (t) = lim sup k ∈ Z V (kT ) = ̃

 V (kT ) for all k ∈ Z . Find-

ng the steady state solution 

˜ V (t) is a simple exercise. When we

mpose the condition ̃

 V (t) < 1 , we get 

− g < β

[
n + 

e g(h −nT ) − 1 

e gT − 1 

]
, 

hich proves the claim. �

heorem 4.2. Consider the model (6) and suppose that the parame-

ers satisfy 

1 − g ≥ β1 

(⌊
h 1 

T 2 

⌋
+ 

e g(h 1 −
 h 1 /T 2 � T 2 ) − 1 

e gT 2 − 1 

)
, (10) 

here T 2 = r − ln (1 − g/α2 ) /g. Then for all initial conditions

 1 (0) ≤ 1, V 2 (0) ≤ 1, neuron 1 will fire a spike at some finite positive

ime, and will continue to spike thereafter. 

roof. The proof is immediate from Proposition 4.1 and the obser-

ation that neuron 2 has the maximum spiking frequency when it

s spiking with period given by T 2 . �

In the following analysis, we will refer to (10) , with ‘ ≥ ’ re-

laced by ‘ < ’, as the suppression condition for neuron 1, and the

nalogous statement (with the ‘1’ and ‘2’ indices reversed) as the
uppression condition for neuron 2. Thus, we define the suppres-

ion condition for neuron j ( j, k ∈ 1, 2, j � = k ) as 

j − g < β j 

(⌊
h j 

T k 

⌋
+ 

e g(h j −
 h j /T k � T k ) − 1 

e gT k − 1 

)
, (11) 

here T k = r − ln (1 − g/αk ) /g. If the suppression condition for neu-

on j is satisfied, then, under the assumption that I k (t) = 0 , neuron

 is guaranteed to remain quiescent for all time (after a possible

nitial transient). We will use the analytically derived suppression

ondition to plot bifurcation curves and stability diagrams in pa-

ameter space for the two-neuron system, and we will verify the

nalytically derived results with simulations. We begin with the

implest case, where all parameters are symmetric between the

wo neurons, then proceed to the general, asymmetric case. Finally,

e will examine the behavior of the system in the case that the

xcitatory currents to the two cells are allowed to be noisy. 

.1. Symmetric case 

In the symmetric case, where α1 = α2 = α, β1 = β2 = β, and

 1 = h 2 = h, the system has only 3 three bifurcation parameters

 α, β , h ). Since the suppression condition for neuron 1 is identical

o the suppression condition for neuron 2 , both conditions must be

imultaneously violated or simultaneously satisfied, and we there-

ore expect that the system will either be monostable with both

eurons spiking for all time or bistable with one neuron active and

he other silent (with the identity of the active and silent neu-

ons determined by the initial conditions). We can then plot the

urface in α, β , h space obtained by replacing the inequality in

he suppression condition for neuron j ( (11) ) by equality; this sur-

ace separates the monostable from the bistable regime ( Fig. 3 A,

eft ). In the right panel of Fig. 3 A, we show the cross-section of

his surface given by fixing α = 0 . 5 . In Fig. 3 B, we fix α = 0 . 5 and

 = 5 , and we show computationally derived plots of the spiking

ctivity of neurons 1 and 2 as β is increased through the bifur-

ation value of βc = 0 . 037495 . For β < βc , we see that the system

s indeed monostable, while for β > βc , we find that the system

s bistable (in the plots, neuron 1 is quiescent with neuron 2 ac-

ive, but since all parameters are symmetric, a reversal of the ini-

ial conditions will yield the reciprocal behavior). Interestingly, we

ee that as β approaches βc from the monostable side, the spiking

ehavior of the two neurons (while remaining monostable) resem-

les the bistable regime more and more. 

.2. General case 

In the general case, where asymmetry is permitted in all sys-

em parameters, the system contains six bifurcation parameters:

1 , α2 , β1 , β2 , h 1 , h 2 . Based on the suppression condition de-

ived earlier, we expect that, depending on the values of the bi-

urcation parameters, our two-neuron system may fall into one of

our distinct dynamical regimes: (1) suppression conditions for neu-

ons 1 and 2 are both violated; (2) suppression condition for neuron

 is violated while suppression condition for neuron 2 is satisfied;

3) suppression condition for neuron 1 is satisfied while suppression

ondition for neuron 2 is violated; (4) suppression conditions for neu-

ons 1 and 2 are both satisfied. We expect that in regime (1), both

eurons will spike for all time (monostable; M0). We expect that

n regime (2), neuron 1 will spike for all time while neuron 2 will

e silent (monostable; M1), while in regime (3) the opposite will

ccur (monostable; M2). In regime (4), however, we expect that

he system will be bistable (B) – one neuron will spike for all time

hile the other will be quiescent, with the identity of the active

nd passive cells determined by the initial conditions. Fig. 4 A sum-

arizes these four dynamical regimes. 
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Fig. 3. Stability diagrams and spiking activity in the symmetric case: α1 = α2 = α, β1 = β2 = β, h 1 = h 2 = h A) The left panel shows the analytically derived surface in 

parameter space separating the monostable from the bistable regimes, while the right panel shows the cross section obtained by fixing α = 0 . 5 . B) We fix α = 0 . 5 and 

h = 5 and we plot the spiking activity of the two neurons as β is increased through the bifurcation value βc = 0 . 37495 . The initial conditions for all β values are given by 

V 1 (0) = 0 . 1 , V 2 (0) = 0 . 9 . 
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The suppression condition for neuron j (11) allows us to plot sta-

bility diagrams for the system. We can fix four of the system pa-

rameters and derive a suppression curve for neuron j ( j ∈ {1, 2}) in

the plane defined by the remaining two parameters by replacing

the inequality in (11) by equality. The suppression curve for neu-

ron j partitions the parameter plane into two regions: in one re-

gion, neuron j spikes repetitively for all time, while in the other re-

gion, neuron j is quiescent for all time (after a possible initial tran-

sient). If we simultaneously plot the suppression curves for neu-

rons 1 and 2, we obtain a stability diagram for the system; the two

suppression curves intersect at a bifurcation point of co-dimension

2 and partition the parameter plane into the four distinct stability

regions {M0, M1, M2, B} described above. 

4.2.0.1. Synaptic Inhibition. In Fig. 4 B ( top row ) we fix α1 , α2 , h 1 , h 2
at various values and plot stability diagrams in the β1 , β2 plane,

while in Fig. 4 B ( bottom row ) we fix α1 , α2 , β1 , β2 at various val-

ues and plot stability diagrams in the h 1 , h 2 plane. As would be

expected from the I k (t) = 0 assumption in the derivation of (11) ,

the suppression curves of neurons 1 and 2 are parallel to the y -

axis and x -axis, respectively. This indicates that synaptic inhibition

exerts independent control over the behavior of the two neurons:

whether neuron j spikes repetitively for all time or remains qui-

escent for all time depends on the parameters β j , h j with no de-

pendence on βk , h k ( k � = j ). In other words, with αj , αk fixed, the

behavior of neuron j depends only on the parameters governing

synaptic inhibition to neuron j and not on the parameters govern-

ing the inhibitory current to neuron k . 
In accordance with this independent control , Fig. 4 B shows that

f the fixed value of h 2 ( top row ) or β2 ( bottom row ) is altered,

hen the suppression curve for neuron 2 undergoes a vertical shift

hile the suppression curve for neuron 1 remains unchanged. On

he other hand, altering the fixed value of α2 ( top and bottom rows )

hifts the suppression curves of both neurons, suggesting that the

xcitatory current does not exert independent control over the be-

avior of the two neurons (see next section). The accuracy of the

nalytically derived stability diagrams is verified computationally

n Fig. 5 . Fig. 5 A shows one of the stability diagrams from Fig. 4 as

ell as showing a close-up of the bifurcation point. In Fig. 5 B, we

x h 1 , h 2 , α1 , α2 at the values from Fig. 5 A, and we plot the spik-

ng activity of neurons 1 and 2 when β1 , β2 assume values in each

f the four stability regions {M0, M1, M2, B} extremely close to the

ifurcation point; spiking activity is shown for two initial condi-

ions (IC1: V 1 (0) = 0 . 1 , V 2 (0) = 0 . 9 ; IC2: V 1 (0) = 0 . 9 , V 2 (0) = 0 . 1 ).

n the M0 regime, we see that both initial conditions lead to the

ame behavior (both neurons spiking concurrently for all time). In

he M1 regime, we see that for both initial conditions, the system

onverges to neuron 1 spiking for all time with neuron 2 silent,

hile the reciprocal behavior occurs in the M2 regime. In the B

egime, we see bistability – IC1 leads to neuron 2 spiking for all

ime with neuron 1 silent, while IC2 leads to neuron 1 spiking for

ll time with neuron 2 silent. 

xcitatory Current. As alluded to in the previous paragraph, the ex-

itatory current does not appear to exert independent control over

he behavior of the two neurons, in the sense that varying αj can
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Fig. 4. ( A) Possible stability regimes based on the analytic suppression condition. (B) Stability diagrams for synaptic inhibition parameters. In the top row, we fix α1 , α2 , h 1 , 

h 2 at various values and plot the suppression condition for neuron 1 and the suppression condition for neuron 2 , with the inequality in (11) replaced by equality, in the β1 , β2 

plane. In the bottom row, we fix α1 , α2 , β1 , β2 at various values and plot the suppression conditions in the h 1 , h 2 plane. We expect that the suppression curves for neurons 

1 and 2 obtained partition the plane into distinct stability regimes. 
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ffect the repetitive spiking vs. quiescence behavior of both neu-

ons (rather than just neuron j ). In Fig. 6 , we explicitly show this

ack of independent control by fixing β1 , β2 , h 1 , h 2 at various val-

es and plotting stability diagrams for the system in the α1 , α2 

lane. We only consider the case where α1 , α2 > g = 0 . 05 (since

j = g is the critical level of excitation required to induce spiking

n neuron j , the cases where αj ≤ g is satisifed for one or both neu-

ons lead to obvious behavior). The suppression curves for the two

eurons in Fig. 6 are not parallel to the x -axis or y -axis, and it is

pparent that it is possible to alter the behavior of both neurons

y varying either α1 or α2 alone. 

If the synaptic inhibition parameters β1 , β2 , h 1 , h 2 are suffi-

iently small, then neither neuron is capable of silencing the other,

egardless of the values of α1 or α2 , and the entire segment α1 ,

2 > g of the α1 , α2 plane will correspond to a single stability

egime: M0. The reason this scenario can occur for nonzero val-

es of the synaptic inhibition parameters is because the absolute

efractory period of r = 2 ms within our model imposes an upper

ound on the spike rate of the two neurons, limiting the amount

f inhibition that one neuron can deliver to the other for fixed β1 ,

2 , h 1 , h 2 . If we increase β j or h j slightly while leaving the synap-

ic inhibition parameters for the other neuron ( βk , h k ) small, a sup-

ression curve for neuron j materializes in the α1 , α2 > g segment

f the plane, partitioning the α1 , α2 > g segment of the plane into

wo stability regions: M0, M j . If we then increase βk or h k slightly,

 suppression curve for neuron k materializes in the α1 , α2 > g seg-

ent of the plane as well; however, the suppression curves for

eurons j and k do not intersect, and the α1 , α2 > g segment of

he plane is partitioned into three stability regions: M0, M1, M2

 Fig. 6 , top left ). 

This lack of intersection is possible because αj controls both the

mount of inhibition delivered by neuron j to neuron k as well as
he ability of neuron j to surmount the inhibition incoming from

euron k . In the inhibitory regime where a lack of intersection oc-

urs, the inhibitory parameters are such that neuron j can silence

euron k only if αj is high and αk is low – neuron k will be si-

enced only if αj is high enough for neuron j to deliver strong in-

ibition and αk is low enough to prevent neuron k from overcom-

ng this inhibition. Likewise, αk must be high with αj low in order

or neuron k to silence neuron j , and there does not exist a pair of

alues αj , αk which allows both neuron j to potentially quiet neu-

on k and neuron k to potentially quiet neuron j . Thus, no pair of

alues α1 , α2 yields the bistable behavior B. 

If we further increase the synaptic inhibition parameters for

euron 1 or 2 (or both), the suppression curve for neuron 1

ill exhibit slower growth or the suppression curve for neuron

 will exhibit steeper growth in the α1 , α2 > g segment of the

lane (or both), leading to an intersection (a bifurcation point of

o-dimension 2) and creating a fourth stability region: B. Within

uch an inhibitory regime, the inhibitory parameters are such

hat there exist a pair of values α1 , α2 that allow each neuron

o potentially silence the other. This is shown in Fig. 6 , in which

e plot the stability diagram within an inhibitory regime where

n intersection occurs ( top right ) and we show how the stability

iagram changes when either β2 ( bottom left ) or h 2 ( bottom right )

s increased in isolation. 

ther Stability Regimes. Thus, similar to the voltage-based

ntegrate-and-fire model, we find that in the current-based

ntegrate-and-fire model there exist the basic stability regions

M0, M1, M2, B} of parameter space and that these regions can be

ound analytically. In the voltage-based integrate-and-fire model,

 comprehensive analysis of model behavior was possible, and

e were able to show with mathematical rigor that these four
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Fig. 5. ( A) Stability diagram of the system in the β1 , β2 plane with a zoom-in of the bifurcation point in the right panel. (B) Spiking activity of neurons 1 and 2 is 

shown when β1 , β2 assume values in the M0 region ( β1 = 0 . 2130 , β2 = 0 . 0932 ), M1 region ( β1 = 0 . 2130 , β2 = 0 . 0934 ), M2 region ( β1 = 0 . 2132 , β2 = 0 . 0932 ), and B region 

( β1 = 0 . 2132 , β2 = 0 . 0934 ). Spiking is shown for two initial conditions – IC1: V 1 (0) = 0 . 1 , V 2 (0) = 0 . 9 ; IC2: V 1 (0) = 0 . 9 , V 2 (0) = 0 . 1 . 
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stability regions of parameter space exhaust all possible behaviors

of the system. In the current-based model, however, an exhaustive

mathematical analysis of model behavior is more difficult, but

through computational investigations we now show that addi-

tional stability regions beyond the basic {M0, M1, M2, B} regions

can exist within parameter space, and that the existence of these

additional stability regions is due to the temporal dynamics of

synaptic input (in the voltage-based model, synaptic input is

instantaneous and has no dynamics). 

In the derivation of the suppression condition for neuron j (11) ,

we assumed I k (t) = 0 (i.e., that neuron k receives no inhibition

from neuron j ), and we provided computational evidence in the

Synaptic Inhibition section that the stability diagrams obtained un-

der this assumption are accurate. However, it is reasonable to ex-

pect that, under certain conditions, nonzero I k ( t ) may have an im-

pact on the dynamical behavior of the system. We can then ask:

under what conditions might nonzero I ( t ) lead to a deviation from
k 

s  
he dynamical steady-state behavior deduced from the stability di-

grams given by (11) ? 

Through computational investigations, we find that, in some pa-

ameter regimes, there exist additional bistable regions near co-

imension 2 bifurcation points in the stability diagrams other than

he {M0, M1, M2, B} regions deduced from (11) . Fig. 7 A shows

 stability diagram in the β1 , β2 plane in which an additional

istable state exists near the co-dimension 2 bifurcation point.

ig. 7 B shows spiking activity of the two neurons for two initial

onditions (IC1: V 1 (0) = 0 . 1 , V 2 (0) = 0 . 9 ; IC2: V 1 (0) = 0 . 9 , V 2 (0) =
 . 1 ) for β1 , β2 values that place the system in the M1 region near

he bifurcation point or far from the bifurcation point. Far from

he bifurcation point, we see that the system exhibits the monos-

able behavior M1, while near the bifurcation point the system ac-

ually exhibits bistable behavior not previously encountered (which

e will denote B1). The bistable state B1 is given by both neurons

piking simultaneously for all time (one stable state) or neuron 1

piking for all time with neuron 2 quiet for all time (the other sta-
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Fig. 6. Stability diagrams of the system in the α1 , α2 plane for α1 , α2 > g = 0 . 05 . For weak mutual inhibition ( top left , the suppression curves for the two neurons do not 

intersect, and three monostable stability regions exist: M0, M1, M2. For sufficiently strong synaptic inhibition ( other panels ), the suppression curves intersect and create a 

fourth bistable stability region: B. 

Fig. 7. A regime in which stability regions other than {M0, M1, M2, B} exist in the β1 , β2 plane. A) A stability diagram in the β1 , β2 plane in which additional stability 

regions exist ( left ), with a zoom-in of the bifurcation point right. B) Spiking plots of neurons 1 and 2 are shown for β1 , β2 in the M1 region near the bifurcation point 

( β1 = 0 . 0337 , β2 = 0 . 0339 ) and far from the bifurcation point ( β1 = 0 . 0310 , β2 = 0 . 0380 ). In the M1 region near the bifurcation point, the system actually exhibits bistability 

(B1). Spiking is shown for two initial conditions – IC1: V 1 (0) = 0 . 1 , V 2 (0) = 0 . 9 ; IC2: V 1 (0) = 0 . 9 , V 2 (0) = 0 . 1 . 
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ble state). This implies that there can also exist bistable behavior

denoted by B2 (for β1 , β2 in the M2 region near the bifurcation

point) in which either both neurons spike concurrently or neuron

2 spikes with neuron 1 silent. 

Under what conditions do we expect the B1 and B2 stability

regions to exist? Suppose our parameter values place the system

in the M1 stability region. If the initial conditions are such that

neuron 1 fires before neuron 2, then (since neuron 1 is capable

of silencing neuron 2 within the M1 region), neuron 2 will never

fire and the system will approach the stable state given by neu-

ron 1 firing and neuron 2 quiescent. If the initial conditions are

such that neuron 2 begins firing before neuron 1, it is guaranteed

that neuron 1 will eventually fire (since neuron 2 is not capable

of silencing neuron 1 in the M1 stability region). In the following

argument, suppose the initial conditions result in neuron 2 firing

before neuron 1. We can expect distinct qualitative behavior in the

case h 1 < T 2 versus the case h 1 > T 2 , where h 1 is the time course of

synaptic inhibition from neuron 2 to neuron 1 and T 2 is the inter-

spike interval of neuron 2 when I 2 (t) = 0 . 

First, suppose h 1 < T 2 (i.e., suppose the time course of synaptic

inhibition from neuron 2 to neuron 1 is smaller than the interspike

interval of neuron 2). In this case, neuron 2 delivers an inhibitory

current to neuron 1 I 1 ( t ) which is guaranteed to go to zero prior to

the next spike of neuron 2; I 1 ( t ) jumps when neuron 2 spikes, but,

since h 1 < T 2 , I 1 ( t ) jumps back down to zero prior to the next spike

of neuron 2. When neuron 1 spikes (and it is guaranteed that it

will, since we are in the M1 stability region), it is likely to spike at

a time t s such that I 1 (t s ) = 0 . Since neuron 1 is capable of silenc-

ing neuron 2, neuron 2 will likely be prevented from spiking prior

to the next spike of neuron 1, and since neuron 1 is not receiv-

ing any inhibition ( I 1 (t) = 0 ), the next spike of neuron 1 will occur

at time t s + T 1 . With the I 1 (t) = 0 assumption in the derivation of

the suppression condition for neuron 2 satisfied, neuron 1 will spike

with an interspike interval of T 1 ms, and the suppression condition

for neuron 2 then guarantees that neuron 2 will be silenced for all

time. Thus, for h 1 < T 2 , we expect that no choice of parameters will

yield the B1 stability regime (all initial conditions will lead to the

stable state given by neuron 1 spiking forever with neuron 2 silent,

and the system will exhibit M1 stability behavior). 

Next, suppose h 1 > T 2 (i.e., suppose the time course of synaptic

inhibition from neuron 2 to neuron 1 is larger than the interspike

interval of neuron 2). In this case, neuron 2 delivers an inhibitory

current to neuron 1 which may never go to zero; I 1 ( t ) jumps when

neuron 2 spikes, but, since h 1 > T 2 , it is guaranteed that I 1 ( t ) > 0

when neuron 1 produces its first spike (since we are in the M1

region, neuron 2 is unable to silence neuron 1, and hence it is

guaranteed that neuron 1 will eventually produce a spike). Thus,

if neuron 1 spikes at time t s , we have that I 1 ( t s ) > 0, implying that

the next spike of neuron 1 will occur at a time t s + T 1 + ε, where

ε > 0 is the delay in the interspike interval of neuron 1 induced by

the nonzero inhibitory current I 1 ( t ). If ε is large enough (i.e., if the

parameter β1 governing the amplitude of synaptic inhibition from

neuron 2 to neuron 1 is large, or close to the neuron 1 suppression

curve in the M1 segment of the β1 , β2 plane), and if the parame-

ter β2 governing the amplitude of synaptic inhibition from neuron

1 to neuron 2 is small enough (i.e., close to the neuron 2 suppres-

sion curve in the M1 segment of the β1 , β2 plane), then neuron 1

may be unable to deliver the inhibition necessary to quiet neuron

2. In this scenario, neuron 2 will spike again, maintaining a mini-

mum T 1 + ε interspike interval of neuron 1, and so neuron 2 will

be able to perpetually spike. Since we are in the M1 stability re-

gion, neuron 2 cannot silence neuron 1, and so neuron 1 will also

spike for all time. This scenario therefore leads to the B1 stability

regime: if neuron 1 spikes first, the system converges to the stable

state given by neuron 1 spiking perpetually with neuron 2 quies-

cent, while if neuron 2 spikes first, then the system converges to
he stable state given by both neurons spiking simultaneously for

ll time. 

This argument therefore suggests that for h j < T k , the B j stability

egime will not exist, while for h j > T k , a B j stability region will ex-

st near the co-dimension 2 bifurcation point in the M j segment of

he β1 , β2 plane. The existence of the B1 and B2 stability regimes

s further suggestive of the possible existence of another stability

egime - a tristable regime (which we denote by T), in which all

hree possible stable modes coexist: neurons 1 and 2 both spike

epetitively for all time, neuron 1 spikes for all time with neuron 2

uiescent, or neuron 2 spikes for all time with neuron 1 quiescent.

f a T stability region exists, it must exist within the B segment of

he β1 , β2 plane, since the latter two behaviors can occur only if

oth the suppression condition for neuron 1 as well as the suppres-

ion condition for neuron 2 are simultaneously satisfied. 

Under what conditions might there exist a portion of parameter

pace within the B region that actually corresponds to a T stabil-

ty regime? In a T stability regime, it must be the case that if the

nitial condition for one of the two neurons is considerably closer

o spike threshold than the initial condition for the other neuron,

hen the closer neuron will suppress the distant neuron for all time

this requirement is met by the simultaneous satisfaction of the

uppression conditions for both neurons (i.e., by remaining within

he B segment of the parameter plane). However, it must also be

he case that if the initial conditions for the two neurons are suffi-

iently close to each other (i.e., if the initial conditions are within

ome ε > 0 neighborhood of each other), then neither neuron will

e able to suppress the other, and both neurons will spike simul-

aneously for all time. For such a scenario to be possible, we must

ave both h 1 > T 2 and h 2 > T 1 , for the reasons elaborated above in

he argument for the existence the B1 or B2 stability regimes. If

oth these conditions hold, and if the parameters β1 and β2 gov-

rning the amplitudes of synaptic inhibition are small, or close to

he neuron 1 and 2 suppression curves, respectively, in the B seg-

ent of the β1 , β2 plane, then, if the initial conditions for neu-

ons 1 and 2 are within a sufficiently small neighborhood of each

ther, both neurons will initially be able to spike, and inhibition

rom neuron 1 to neuron 2 will prevent neuron 2 from silencing

euron 1, while inhibition from neuron 2 to neuron 1 will prevent

euron 1 from silencing neuron 2. Thus, both neurons will be ac-

ive for all time. This argument suggests that if h 1 > T 2 and h 2 > T 1 
i.e., if both B1 and B2 stability regimes exist), then a T region will

xist within the B segment of the β1 , β2 plane near the intersec-

ion of the neuron 1 and neuron 2 suppression curves. However,

his argument also suggests that a T region will not exist if nei-

her, or only one, of the B1 and B2 regions exist. 

We demonstrate this in Fig. 8 , in which we plot stability dia-

rams in the β1 , β2 plane derived from (11) , but with the bound-

ries of the {B1, B2, T} regions approximated through computa-

ional investigations. We plot stability diagrams in the cases that

 1 is slightly smaller or slightly larger than T 2 and h 2 is slightly

maller or slightly larger than T 1 . The stability diagrams suggest

hat the B1 stability region exists near the intersection of the sup-

ression curves in the M1 region only if h 1 > T 2 , the B2 stability

egion exists near the intersection of the suppression curves in the

2 region only if h 2 > T 1 , and T stability region exists near the in-

ersection of the suppression curves in the B region only if both

 1 > T 2 and h 2 > T 1 . We note that when the B1, B2, or T stability

egions exist, they are quite small, requiring sensitive fine-tuning

f parameters to place the system in one of these regimes. It is

herefore possible that B1, B2, or T stability behavior does not play

 significant role in real neuronal systems (or perhaps in the case

f two mutually inhibitory networks of neurons, these regions are

arger); however, it is important to note that such behavior exists.

he full set of possible stability behaviors of the system in various

arameter regimes is summarized in Table 1 . 
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Fig. 8. Stability diagrams of the system in the β1 , β2 plane. The β1 , β2 plane is partitioned into stability regions by the suppression curves for neurons 1 and 2 derived 

analytically from (11) . However, (11) cannot provide information about the stability regimes B1, B2, T that may exist near the co-dimension 2 bifurcation point. The boundaries 

of the {B1, B2, T} stability regions are determined computationally and demarcated by dotted curves. The B1 stability region exists if h 1 > T 2 , the B2 stability region exists 

if h 2 > T 1 , and the T stability region exists if h 1 > T 2 and h 2 > T 1 . In all plots, we fix α1 = 0 . 1 , α2 = 0 . 15 , which yields T 1 = 10 . 1 , T 2 = 15 . 9 . Top left: h 1 = 10 , h 2 = 15 . Top right: 

h 1 = 13 , h 2 = 15 . Bottom left: h 1 = 10 , h 2 = 18 . Bottom right: h 1 = 13 , h 2 = 18 . 

Table 1 

Summary of stability regimes that exist in the two-neuron system in the cases η1 < 1, η2 > 1 ( top left ), η1 > 1, η2 > 1 ( top right ), η1 < 1, η2 < 1 

( bottom left ), and η1 > 1, η2 < 1 ( bottom right ). We define η1 = h 1 /T 2 and η2 = h 2 /T 1 , where h j is the time course of synaptic inhibition to neuron j 

and T j is interspike interval of neuron j in the case that neuron j receives no inhibition. 

η1 < 1, η2 > 1 η1 > 1, η2 > 1 

M0 Monostable; both neurons fire simultaneously M0 Monostable; both neurons fire simultaneously 

M1 Monostable; neuron 1 fires with neuron 2 quiet M1 Monostable; neuron 1 fires with neuron 2 quiet 

M2 Monostable; neuron 2 fires with neuron 1 quiet B1 Bistable; either only neuron 1 fires or both neurons fire 

B2 Bistable; either only neuron 2 fires or both neurons fire B2 Bistable; either only neuron 2 fires or both neurons fire 

B Bistable; one neuron fires with the other quiet B Bistable; one neuron fires with the other quiet 

T Tristable; one neuron fires with the other quiet, or both neurons fire 

η1 < 1, η2 < 1 η1 > 1, η2 < 1 

M0 Monostable; both neurons fire simultaneously M0 Monostable; both neurons fire simultaneously 

M1 Monostable; neuron 1 fires with neuron 2 quiet M1 Monostable; neuron 1 fires with neuron 2 quiet 

M2 Monostable; neuron 2 fires with neuron 1 quiet B1 Bistable; either only neuron 1 fires or both neurons fire 

B Bistable; one neuron fires with the other quiet M2 Monostable; neuron 2 fires with neuron 1 quiet 

B Bistable; one neuron fires with the other quiet 
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.3. Stochastic case 

In the above, we analyzed the dynamics of the deterministic

ystem given by a pair of mutually inhibitory neurons, each of

hich receives a constant excitatory driving current. This analysis

as implications for the more physiologically meaningful case of

utually inhibitory neurons being driven by noisy excitatory cur-

ents. In the case of noisy excitatory currents, we expect distinct

ynamical behaviors depending on the stability behavior of the

orresponding determinstic system (i.e., the system where noisy

xcitatory currents are replaced by constant currents, with the

alue of the constant current given by the mean of noisy excita-

ory currents). If the corresponding determinstic system is within

he M0 regime, we expect both neurons within the noisy system to

pike concurrently with little correlation between the firing of the

wo neurons. If the corresponding determinstic system is within

he M j regime, in the noisy system we expect neuron j to spike

ithout any long pauses between spikes (i.e., with an interspike

nterval that is approximately constant), while the other neuron

xhibits random bouts of spiking activity interrupted by epochs of

uiescence. If the corresponding deterministic system is within the

 regime, we expect the two neurons to exhibit clear-cut alternat-

ng bouts of spiking activity, with random bout times for each neu-

on. 

m  
In order to assess the dynamics of a noisy system, we replace

he constant excitatory currents in our model by noisy currents

nd computationally investigate the spiking behavior of the two

eurons. We construct our noisy excitatory currents as follows. The

xcitatory current αj ( t ) jumps by a constant value a j at a Poisson

ate of λj (this models excitatory spikes from outside the two-cell

ystem), and decays at a constant rate of b j = 1 / 3 ms −1 . Stan-

ard values of the rate and amplitude parameters are given by
∗
j 
= 1 ms −1 and a ∗

j 
= 0 . 075 ms −1 . All nonstandard excitatory cur-

ents are described in terms of these reference values. We refer to

 j = a j λ j as the strength of the excitatory current to neuron j and we 

efer to Y j = 

a j 
λ j 

as the noisiness of the excitatory current to neuron

 . To change the strength of the excitatory current to neuron j by a

actor c (without varying the noisiness), we set the rate parameter

o λ j = 

√ 

c λ∗ and we set the amplitude parameter to a j = 

√ 

c a ∗. To

ary the noisiness of the excitatory current to neuron j by a fac-

or d (without changing the strength), we set the rate parameter

o λ j = 

λ∗√ 

d 
and we set the amplitude parameter to a j = 

√ 

d a ∗. We

enote the strength and noisiness of the standard excitatory cur-

ent by X ∗ = λ∗a ∗ and Y ∗ = 

a ∗
λ∗ . Fig. 9 depicts the effects of varying

 and Y on the excitatory current. 

In order to quantify whether simultaneous spiking or alternat-

ng activity bouts are occurring in the noisy system, we devise a

easure of the correlation between the spiking activity of the two
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Fig. 9. Effect of varying the strength ( X ) versus the noisiness ( Y ) of the noisy excitatory current. One realization of the noisy excitatory current is shown for different 

combinations of strength (rows) and noisiness (columns). 
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neurons that we term the bout index (BI) of the system. To com-

pute the BI of the system within a particular parameter regime, we

obtain 10,0 0 0 interspike intervals of neurons 1 and 2, only count-

ing interspike intervals in which the other neuron did not produce

a spike; we compute the average interspike intervals ISI 1 and ISI 2 
of the two neurons and set I SI = min { I SI 1 , I SI 2 } . We then simulate

a 50 second trial of the system, and we parse the trial into suc-

cessive time windows of length ISI . Within each window, we as-

sign neuron j a 1 if neuron j spiked within the window and a 0 if

neuron j did not spike within the window, obtaining a sequence

of 0s and 1s for neuron 1 and neuron 2. The BI of the system

(BI ∈ [ −1 , 1] ) is then computed as the correlation between the se-

quences of 0s and 1s for neurons 1 and 2. If alternating activity

bouts are occurring, the BI of the system approaches −1 , while

if both neurons are spiking concurrently (with little correlation),

the BI approaches 0. We experimented with various schemes for

defining the bout index , and we found the scheme presented in

this paragraph to be the best measure of the bout behavior of the

system. 

In Fig. 10 , we fix the inhibitory parameters of the system to ob-

tain the stability diagram (of the corresponding deterministic sys-

tem) in the α1 , α2 plane shown in Fig. 10 C. In Fig. 10 A, we plot

spiking activity of the two neurons in the noisy system with the

strength of the excitatory currents given by X 1 = X 2 = 2 X ∗ (left),

X 1 = X 2 = 2 . 5 X ∗ (middle), X 1 = X 2 = 3 X ∗ (right), and the noisiness

of the excitatory currents fixed at Y 1 = Y 2 = 0 . 01 Y ∗. In the left

panel of Fig. 10 A, the mean of the excitatory currents is within

the B region, and the system exhibits clear-cut alternating bouts of

activity with a bout index given by BI = -0.99. In the middle panel

of Fig. 10 A, the mean of the excitatory currents is near the co-

dimension 2 bifurcation point in the α1 , α2 plane, and the system

exhibits some bout behavior intermingled with concurrent spik-

ing and has BI = -0.49. In the right panel of Fig. 10 A, the mean

of the excitatory currents is within the M0 region, and the two

neurons exhibit concurrent, uncorrelated spiking with BI = −0.03.

In Fig. 10 B, the means of the excitatory currents are within the

M2 region ( X 1 = 2 . 5 X ∗, X 2 = 2 . 8 X ∗; Y 1 = Y 2 = 0 . 01 Y ∗), with neuron

2 firing continuously and neuron 1 exhibiting bursts of activity

interspersed with epochs of silence. In this case, the system has

BI = −0.2; this partial correlation between the activity of the two
ells occurs because when neuron 2 fires, it is capable of sup-

ressing neuron 1 for a considerable period of time (BI = −1), while

hen neuron 1 happens to fire, it is incapable of quieting neu-

on 2, and hence both neurons will fire simultaneously (BI = 0). The

verall BI of the system is essentially a weighted average of BI = −1

nd BI = 0, with the weights determined by the relative amounts of

ime that the system spends in the first or second scenario. 

In Fig. 11 ( left ), we fix the inhibitory parameters as in

ig. 10 and we plot the BI of the system as a function of the

trength of the noisy excitatory currents to the two neurons ( X =
 1 = X 2 ) for several different noisiness values ( Y = Y 1 = Y 2 ). As the

trength of the excitatory currents is increased from X = 0 . 5 to

 = 5 , the BI of the system rises from −1 to 0 as the system tra-

erses the diagonal in the stability diagram (of the corresponding

eterministic system) shown in Fig. 10 C (at X = ∼ 2 . 5 X ∗, the corre-

ponding deterministic system is near the co-dimension 2 bifurca-

ion and we have BI = ∼ −0 . 5 ). This occurs because the correspond-

ng deterministic system is transitioning from the B stability region

o the M0 stability region through the co-dimension 2 bifurcation

oint. For low noisiness ( Y = 0 . 01 Y ∗), the transition from BI = −1

o BI = 0 is sharp, while as the noisiness is increased to Y = 0 . 1 Y ∗

nd Y = Y ∗, the transition becomes more gradual and occurs over

 progressively larger range of X values. Thus, we can conclude that

or true alternating activity bouts to occur, the corresponding de-

erminstic system must be firmly within the B region, and that the

ower the noisiness of the excitatory currents the closer the cor-

esponding deterministic system can be to the boundary of the B

egion while still obtaining true bout behavior. In other words, the

oisier the system, the closer the corresponding deterministic sys-

em must be to the center of the B region to elicit well-defined,

lternating spike bouts. 

In Fig. 11 ( left ), we see that for very low values of X (below

 = ∼ 0 . 5 ), the BI of the system rises as X → 0. This occurs because

or very low values of X , the corresponding deterministic system

s in the α1 , α2 < g regime (i.e., in the regime where excitation is

nsufficient to allow either neuron to spike). Thus, in the noisy sys-

em, the mean of the excitatory currents keeps the membrane po-

ential of the two neurons below threshold, and one of the neu-

ons will spike only when a transient positive fluctuation in its

xcitatory current pushes its membrane potential above the spike
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Fig. 10. Spiking activity and bout index (BI) of the two-neuron system with noisy excitatory currents (see text for details). A) Spiking activity of the two neurons when the 

corresponding deterministic system is in the B0 regime (left; X 1 = X 2 = 2 X ∗), at the co-dimension 2 bifurcation (middle; X 1 = X 2 = 2 . 5 X ∗), or within the M0 regime (right; 

X 1 = X 2 = 3 X ∗). The noisiness of the excitatory currents is fixed at Y 1 = Y 2 = 0 . 01 Y ∗ . B) Spiking activity of the two neurons when the corresponding deterministic system is 

within the M2 regime ( X 1 = 2 . 5 X ∗, X 2 = 2 . 8 X ∗; Y 1 = Y 2 = 0 . 01 Y ∗). C) Stability diagram of the corresponding deterministic system in the α1 , α2 plane. The co-dimension 2 

bifurcation occurs at α1 = α2 = ∼ 0 . 55 . 

Fig. 11. Bout index (BI) of the two-neuron system with noisy excitatory currents (see text for details). In the left panel, the BI of the system is plotted as a function of 

the strength X of the noisy excitatory currents to the two neurons for different fixed values of the noisiness Y . In the middle and right panels, the statistics of the noisy 

excitatory currents are fixed and the BI of the system is plotted as either the amplitude β or time course h of synaptic inhibition are symmetrically varied, respectively. Left: 

β1 = β2 = 0 . 4 , h = h 1 = h 2 = 5 ; Middle: X 1 = X 2 = 2 X ∗, Y 1 = Y 2 = . 1 Y ∗, h 1 = h 2 = 5 ; Right: X 1 = X 2 = 2 X ∗, Y 1 = Y 2 = . 1 Y ∗, β1 = β2 = . 4 . 
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hreshold. Spiking is therefore rare and sporadic, and the spiking

f neuron j is controlled not by inhibition from the other neuron

ut primarily by fluctuations in its own excitatory current. This re-

ults in a lack of correlation between the spiking activity of the

wo neurons, with the correlation between the activity of the two

eurons declining as X → 0 and spikes become progressively more

carce, yielding a BI that approaches 0. 

In the other panels of Fig. 11 , we fix the strength X = X 1 = X 2 
nd noisiness Y = Y 1 = Y 2 of the noisy excitatory currents and plot

he BI of the system as either the amplitude β = β1 = β2 ( Fig. 11 ;

iddle ) or time course h = h 1 = h 2 ( Fig. 11 ; right ) of inhibition is
aried. As either β or h is increased, the BI of the system falls

rom 0 to -1. For weak inhibition, neither neuron can silence the

ther, and both neurons tend to spike concurrently and nearly in-

ependent of each other (BI → 0), while when inhibition is strong

relative to excitation), each neuron is capable of quieting the other

nd the system exhibits alternating bouts of activity (BI → −1). This

an also be inferred from the stability diagrams in the α1 , α2 plane

hown in Fig. 6 – as inhibition is strengthened, the B stability re-

ion appears and grows larger; hence, given a point a, b in the M0

egion of the α1 , α2 plane, as inhibition is strengthened the B sta-

ility region will eventually encompass a, b . 
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Fig. 12. Bout distributions of the current-based integrate-and-fire two-neuron system with noisy excitatory currents when the corresponding deterministic system is in the 

B stability regime. The left, middle, and right panels show P[Bout Length > S] vs. S with a log scale on the y -axis in the case that parameters for the two neurons are 

symmetric, inhibition from neuron 1 to neuron 2 is increased, and the noisy excitation to neuron 1 is increased, respectively. The linear relationships indicate exponential 

distributions. The mean bout times for neuron 1 and neuron 2 are: 57 ms and 57 ms (left), 77 ms and 58 ms (middle), 77 ms and 35 ms (right). Left: β1 = β2 = 0 . 4 , 

h 1 = h 2 = 5 , X 1 = X 2 = 2 X ∗, Y 1 = Y 2 = Y ∗ . Middle: β2 changed to 0.45. Right: X 1 changed to 2.25 X ∗ . Data are collected over a 10 0 0 s run with at least 50 0 0 bouts per neuron. 
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5. Discussion 

In this work, we used analytic and computational tools to ex-

amine monostability versus bistability in a system of two mutu-

ally inhibitory neurons being driven by constant excitatory cur-

rents, using two neuron models (the voltage-based and current-

based integrate-and-fire models). Analytically, we found 3 possi-

ble monostable regimes and 1 possible bistable regime: (1) both

neurons spike simultaneously for all time (M0); (2) neuron 1 fires

with neuron 2 silent (M1); (3) neuron 2 fires with neuron 1 silent

(M2); (4) one neuron fires with the other quiet, with the identities

of the active and passive cells determined by the initial conditions

(B). We found that these stability regimes encompass all possible

behavior for the voltage-based integrate-and-fire model, but inter-

estingly for the integrate-and-fire model two additional bistable

regimes and a tristable regime may exist: (5) either neuron 1 fires

with neuron 2 silent or both neurons spike concurrently (B1); 6)

either neuron 2 fires with neuron 1 silent or both neurons spike

concurrently (B2); 7) either neuron 1 fires with neuron 2 silent,

neuron 2 fires with neuron 1 silent, or both neurons spike con-

currently (T). However, we found that obtaining B1, B2, or T be-

havior requires delicate fine-tuning of parameters, suggesting that

these regions may not be as important physiologically. The set of

all possible stability regimes is described in Table 1 . Furthermore,

we found that synaptic inhibition exerts independent control over

the spiking versus quiescence behavior of the two neurons, in the

sense that inhibition from neuron j to neuron k only affects the be-

havior of neuron k (and has no impact on the behavior of neuron

j ). Excitation, on the other hand, exerts no such independent con-

trol – the excitatory current to neuron j influences the behavior of

both neuron j and neuron k . 

Finally, we examined the behavior of the system in the case

that the excitatory currents to the two neurons were allowed to

be noisy; in this case, if the corresponding deterministic system is

in the M0 regime, then in the noisy system the two neurons will

fire nearly independent of each other, while if the corresponding

deterministic system is in the B regime, then in the noisy system

the two neurons will exhibit alternating bouts of activity. We de-

vised a metric we termed the bout index (BI) to assess behavior in

the stochastic case, and, as system parameters are varied, we found

that the system transitions from concurrent spiking to bout behav-

ior in agreement with the stability diagrams of the corresponding

deterministic system. Moreover, we found that the sharpness of the

transition is inversely related to the noisiness of the excitatory cur-

rents within the system. 
a  

a  
.1. Choice of model 

In this study, we modeled our two cells as voltage-based

ntegrate-and-fire neurons (with instantaneous input) or current-

ased integrate-and-fire neurons (with temporally structured in-

ut) that receive constant or noisy excitatory currents and inhibit

ach other synaptically. We chose such simplified models because

f their analytical tractability – the models allowed us to explic-

tly derive Poincare maps or suppression conditions for the two

eurons and plot stability diagrams. In fact, the {B1, B2, T} sta-

ility regimes, which are difficult to derive analytically, could be

ound computationally only because of precise knowledge about

he location of the co-dimension 2 bifurcation point in the stabil-

ty diagrams obtained through analytical calculations. Furthermore,

n our analysis we found that the {B1, B2, T} stability regimes

o not exist in the voltage-based integrate-and-fire model, but

re present only in the current-based integrate-and-fire model.

his is a consequence of the temporal dynamics of inhibition –

n the voltage-based integrate-and-fire model, inhibitory synapses

etween the two neurons are instantaneous (inhibitory inputs are

odeled as delta functions), while in the current-based integrate-

nd-fire model inhibition from one neuron to the other has a fi-

ite time course. Moreover, in the current-based integrate-and-

re model we found that the B j stability region exists only when

 j > T k ( j � = k ∈ {1, 2}), where h j is the time course of inhibition to

euron j and T k is the interspike interval of neuron k , while the

 stability region exists only when both h 1 > T 2 and h 2 > T 1 (as

xplained in the Other Stability Regimes section). In the voltage-

ased integrate-and-fire model, since inhibitory input is instanta-

eous, these conditions cannot be satisfied, and hence the {B1,

2, T} stability regimes are precluded from occurring. Thus, while

he voltage-based model exhibits greater analytic tractability than

he current-based integrate-and-fire model, the lack of inhibitory

emporal dynamics has significant dynamical consequences – the

oltage-based model is unable to capture the dynamics associated

ith the {B1, B2, T} stability regimes. This underscores the im-

ortance of model selection – the full dynamics of network be-

avior may not emerge if the neuron model is simplified to ne-

lect the temporal dynamics of synaptic transmission, as in the

oltage-based model, though the basic stability behavior described

y the {M0, M1, M2, B} regimes can still be investigated with such

 model. 

While the quantitative results presented in this paper are spe-

ific to our particular model choices, the qualitative results are

enerally applicable. It is reasonable to expect in general that

 pair of reciprocally inhibitory neurons, with or without noise

dded to the excitatory driving currents, will exhibit the dynam-
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cal behaviors and stability regimes described in this paper. Fur-

hermore, the behavior of a pair of reciprocally inhibitory neurons

ay be applicable to the case of two mutually inhibitory popula-

ions of neurons. If the two populations strongly inhibit each other

ith relatively weak intra-population connectivity, we expect that

imilar general principles to those described in this paper will gov-

rn the behavior of the mutually inhibitory populations. 

.2. Sleep-Wake cycling 

In particular, the results in this paper may provide a useful

tarting point for the study of sleep-wake cycling in infant mam-

als. Infant mammals cycle between the behavioral states of sleep

nd wakefulness, spending a random amount of time within each

tate. The durations of sleep or wake bouts are exponentially dis-

ributed random variables and both sleep and wake bouts exhibit

o bout-to-bout memory (the duration of the current bout is sta-

istically independent of the duration of prior bouts), with mean

leep and wake bout times increasing (while remaining expo-

entially distributed) through early infancy independently of each

ther ( Blumberg et al., 2005; Gall et al., 2009; Halász et al., 2004;

arlsson et al., 20 05; 20 04; Kleitman and Engelmann, 1953; Lo

t al., 20 04; 20 02 ). Behavioral sleep and wake states are each cor-

elated with the activity of ‘sleep-active’ (e.g., nucleus pontis oralis

ells) and ‘wake-active’ (e.g., dorsolateral pontine tegmentum cells)

opulations within the brain that may reciprocally inhibit each

ther. During a sleep bout, ‘sleep-active’ neurons fire and ‘wake-

ctive’ neurons are quiet, while during a wake bout, ‘wake-active’

eurons fire and ‘sleep-active’ neurons are silent ( Blumberg et al.,

005; Karlsson et al., 2005 ). This picture is reminiscent of stochas-

ic switching within a bistable system; from a dynamical systems

erspective, sleep and wakefulness represent two deterministically

table states of the system, with the two stable states given by

piking of one population and quiescence of the other. 

Fig. 12 shows bout distributions of the current-based integrate-

nd-fire two-neuron system in the case that the corresponding de-

erministic system is within the B stability regime, with a log scale

n the y -axis (the linear relationships indicate exponential bout

istributions). The left panel shows the case where parameters are

ymmetric and mean bout times are equivalent for the two neu-

ons – exponential bout distributions arise due to a lack of mem-

ry within the system (when one neuron is spiking, its mean spike

ate is constant due to its constant-mean excitatory drive, indicat-

ng that the inhibition delivered to the other neuron approaches a

teady state mean value on a time scale that is rapid relative to the

ime scale of bouts; along with the constant means of the noisy ex-

itatory currents to the two neurons, this implies that there exists

o vehicle via which the system can track the duration of an on-

oing bout). The mean bout times of the two neurons can be mod-

fied by altering the strength of inhibition or the excitatory drive.

ncreasing the strength of inhibition from neuron 1 to neuron 2

ncreases the mean bout time of neuron 1 without affecting the

ean bout time of neuron 2 ( Fig. 12 , middle), since inhibition from

euron 1 to neuron 2 is only active during a bout of neuron 1 (dur-

ng a bout of neuron 2, neuron 1 is quiescent), and hence increas-

ng the strength of neuron 1 to neuron 2 inhibition impacts only

outs of neuron 1. Increasing the strength of excitation to neuron

, on the other hand, both increases the mean bout time of neuron

 and decreases the mean bout time of neuron 2 ( Fig. 12 , right)

increased excitation to neuron 1 implies that when neuron 1 is

n a bout, the probability of a bout switch is lowered, while when

euron 2 is in a bout, the probability of a bout switch is higher

since the increased excitation to neuron 1 implies that a smaller

uctuation is required for neuron 1 to initiate a bout switch). This
uggests that stochastic switching in a bistable system may pro-

ide a natural explanation of sleep-wake switching through early

nfancy – constant-mean noisy excitation to sleep and wake pop-

lations naturally leads to exponential sleep and wake bout dis-

ributions, while inhibition between the two populations provides

 method by which mean sleep and wake bout times can be in-

ependently regulated as the animal ages through early infancy. A

omprehensive analysis of bout distributions within the context of

leep-wake switching is carried out in other work ( Patel, 2015; Pa-

el and Joshi, 2014; Patel and Rangan, 2017 ). The results presented

n this paper may provide a foundation for understanding the na-

ure of the reciprocal inhibition required to place two populations

ithin the (deterministic) B regime, as well as assessing the bout

ehavior of the two populations when the system is permitted to

e noisy. 
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