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HIGHLIGHTS

e High threshold or phase-delayed inhibition can both decode synchronized oscillations.

e Both mechanisms can create a decoder with a sharp synchrony threshold.

e High threshold: synchrony threshold is sensitive to input.
e Phase-delayed inhibition: synchrony threshold is more robust.
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The widespread presence of synchronized neuronal oscillations within the brain suggests that a
mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder
include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network
motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been
observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing
a high spike threshold. In this work, we use a computational and mathematical approach to investigate
the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that
phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering
properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed
inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Within the brain, synchronized oscillations are ubiquitous, as
evident from local field potential (LFP), electroencephalogram (EEG),
and other recordings obtained from diverse species throughout the
animal kingdom. In fact, networks of neurons can be found within the
brains of all manner of organisms, from insects and fish to birds and
mammals, which exhibit synchronized and periodic spiking within
physiologically meaningful dynamical regimes (e.g., see Eckhorn, 1994;
Friedrich et al., 2004; Gray, 1994; Laurent and Davidowitz, 1994;
Marthy and Fetz, 1992; Sridharan et al., 2011). In some instances, such
as thalamocortical oscillations during sleep (Steriade, 2006), neuronal
oscillations are coordinated on a global scale and may not play a direct
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role in information processing. In many instances, however, synchro-
nized oscillations are localized and modulated by external stimuli. The
overwhelming presence of stimulus-dependent, periodic, coherent
activity within a vast array of brain areas implies that synchronized
oscillations may be a strategy commonly employed by neuronal
networks to encode and relay information.

In order for the brain to use synchronized oscillations as a coding
tool, a neural mechanism must exist that is capable of decoding the
activity of a population of cells representing information by firing in a
coherent and periodic fashion. There are two simple, biologically
plausible mechanisms for creating such a decoder: (1) a read-out
neuron with a high spike threshold (relative to the strength of
individual inputs), and (2) a read-out neuron that receives phase-
delayed inhibition.

A decoder with a high threshold detects synchronized oscilla-
tions by virtue of the fact that a large proportion of its inputs
(the encoders) must fire in unison in order for the decoder to
cross-spike threshold, and hence this decoder will be active during
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Fig. 1. Schematic of network architecture needed to implement synchrony decod-
ing with a high spike threshold versus phase-delayed inhibition. (A) High spike
threshold decoder. A set of excitatory encoder neurons innervate a decoder neuron
with a high spiking threshold relative to the strength of encoder inputs. (B) Phase-
delayed inhibition decoder. A set of excitatory encoder neurons innervate a set of
inhibitory interneurons as well as sending convergent input to a decoder neuron.
The decoder neuron also receives input from the inhibitory interneurons.
Each excitatory encoder spike is followed, with a slight delay, by an inhibitory
interneuron spike.

Decoder

an oscillation cycle only if this condition is satisfied (Fig. 1A). An
example of a high threshold synchrony decoder can be found in
the auditory system; each octopus cell within the ventral cochlear
nucleus receives convergent input from at least 60 auditory nerve
fibers. Octopus cells have low input resistance, short membrane
time constants, and a relatively high spike threshold. These cells
therefore have brief temporal integration windows (~1 ms) and act
as coincidence detectors of their input—an octopus cell will fire
only if a significant fraction of its presynaptic auditory nerve fibers
spike synchronously (see Oertel et al., 2000 for a review).

Phase-delayed inhibition operates in a different manner. The
neural architecture underlying phase-delayed inhibition consists
of a group of neurons (the encoders) that provide excitation to a
read-out neuron (the decoder), but en-route to the read-out cell
the axons of the encoders send collaterals to a group of inhibitory
interneurons, which in turn provide potent inhibitory input to the
read-out cell (Fig. 1B). As a consequence of synaptic transmission
delay (or via some other delay-generating mechanism), each
excitatory input to the decoder is followed, with a characteristic
temporal lag, by an inhibitory input. The intuition behind phase-
delayed inhibition is clear; if the encoders spike haphazardly, then
the inhibitory interneurons follow accordingly, and the read-out
neuron remains covered in a perpetual blanket of inhibition,
unable to respond to the encoders. If, on the other hand, the
encoders fire synchronously, then the read-out neuron will receive
aggregate excitation followed by pooled inhibition, allowing the
read-out cell to respond to the encoders within the window of
excitation. This process can be repeated within each cycle of
oscillation, enabling the decoder neuron to behave as a synchrony
filter—the read-out cell fires if the encoders spike synchronously
but remains quiescent if their spiking is discordant.

Within the brain, anatomical and physiological studies have led
to the proposal of phase-delayed inhibition as a means to decode
synchronous spiking within a neuronal population in multiple
systems (see Real Neural Systems section of Discussion), and
several existing models have examined the physiological signifi-
cance of phase-delayed inhibition (see Other Modeling Work
section of Discussion). However, the precise computations per-
formed by the phase-delayed inhibition architecture have yet to be
rigorously investigated. In this work, we seek to fill this void. We
begin by deconstructing the idea into its most mathematically
simplified form, and we then verify the results of our simplified
scheme by simulating excitatory and inhibitory inputs to an
integrate-and-fire model neuron as well as deriving analytic

results on neuronal dynamics. We conclude that, within the
proper dynamical regime, phase-delayed inhibition can impose a
sharp synchrony threshold on the inputs to a read-out cell, and
hence can serve as a powerful device to allow a decoder to discard
inputs falling below this threshold level of synchrony. Further-
more, we show that phase-delayed inhibition allows for the
creation of a synchrony detector that is more robust to noise
than a synchrony detector created using a high spike threshold
(without inhibition).

2. Results
2.1. Model of encoder and interneuron spikes

In accordance with the diagram presented in Fig. 1B, we
constructed a network consisting of n encoder neurons, n inhibi-
tory interneurons, and a single read-out neuron (i.e., decoder
neuron). In all investigations, the number of inhibitory interneur-
ons was kept equal to the number of encoders, with the number of
each given by n (this common number of encoders and interneur-
ons n was varied in some investigations). In order to formulate the
problem of phase-delayed inhibition in a mathematically tractable
and intuitively transparent manner, we described the activity of
the encoders and inhibitory interneurons using step functions
distributed over a Tms period. A spike of the kth encoder cell
occurring at time ¢ was described by a step function taking the
value 0 until time z, the value «/n from time ¢ to time z + ¢, and
the value 0 from time z + ¢ onwards. If the kth encoder fired at
time 7, then a spike was elicited from the kth inhibitory neuron at
time 7 + d, which was described by a step function taking the value
0 until time 7 + d, the value -3/n from time z + d to time z + d + h,
and the value 0 from time z + d + h onwards. The total amplitude
of excitation, in the case that all encoders fired in unison, was
therefore given by « (independent of n). If all inhibitory neurons
fired concordantly, the net magnitude of inhibition was given by g,
a parameter which was varied in our simulations. We performed
simulations with different values of the synaptic delay d and found
similar results for all reasonable values; to simplify subsequent
analysis, we fixed the delay at the value d=3 ms. In agreement
with the approximate time course of fast excitatory synapses
within the brain, the length of excitation was fixed at c=3 ms
(Kleppe and Robinson, 1999; Loring and Zigmond, 1988; Thany,
2010; Titz and Keller, 1997; Zhou and Hablitz, 1998). The inhibitory
time course h was varied during our investigations (Fig. 2). The net
input to the read-out neuron (i.e., decoder neuron) as a function

Encoders
(n=4)

Inhibitory
Interneurons

Decoder T ms

Fig. 2. Description of encoder and interneuron spikes as step functions. Within
each T ms oscillation period, each of the n encoders was designated to have spiked
once, with spike times distributed throughout the T ms period. If an encoder spiked
at time ¢, then the spike was described by a step function taking the value «/n from
time ¢z to time z+c and the value O elsewhere. The corresponding inhibitory
interneuron was designated to have spiked at time 7 + d, with the spike described
by a step function taking the value -g/n from time 7 + d to time = +d + h and the
value 0 elsewhere. We fixed d=3, while g and h were varied during our
simulations. For our simplified decoder model, we fixed a=1 and summed the
2n step functions describing the activity of the n encoders and n interneurons; we
fixed a numerical threshold & = 0.05, and the activity of the decoder was measured
as the amount of time the step function sum spent above the threshold 6.
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of time was given by the sum of the 2n step functions describing
the activity of the n encoders and n inhibitory neurons.

To test the efficacy of phase-delayed inhibition in decoding
coherent oscillations, we set an oscillation frequency » Hz and
simulated varying levels of synchrony among the input elements.
If v Hz corresponded to a period of T ms, then each encoder cell
was designated to spike exactly once during each T ms period. A
synchrony level of 0 (complete decoherence) was simulated by
evenly distributing the phases of the n encoder spikes throughout
each T ms period, while a synchrony level of 1 (perfect synchrony)
was simulated by precisely aligning the spike times of each
encoder within every Tms period. Intermediate values of syn-
chrony ranging from O to 1 were simulated by evenly distributing
encoder spike times throughout progressively smaller time win-
dows within each Tms period (with window size shrinking
linearly as a function of synchrony from T to 0 ms). The distribu-
tion of spike phases throughout a given time window was uniform
and deterministic (i.e., not random).

2.2. Simplified decoder model

Our simplified decoder model was constructed by imposing a
numerical threshold on the sum of the 2n step functions describ-
ing the activity of the n encoders and n inhibitory neurons. Within
our simplified decoder model, we fixed the strength of excitation
at « =1 and we designated the read-out cell (i.e., decoder neuron)
as being active (i.e., firing action potentials) when the net input
exceeded a particular threshold value . Since the amplitude of
each encoder input was normalized (and given by a/n, with a = 1),
the threshold satisfied 0<©<1, with the value of @ denoting the
fraction of encoder cells that were required to be synchronously
active in order to induce spiking in the read-out neuron. The activity

of the decoder neuron was measured as the total amount of time
spent above the threshold 6.

A high value for ® would clearly require a large proportion of
encoders to fire concurrently in order to push the read-out cell above
threshold, regardless of the presence of inhibition. Thus, phase-
delayed inhibition is likely to be most useful as a synchrony filter
for a relatively low threshold. For an oscillation frequency of
o =20 Hz, a threshold of ® < 0.35 was required to ensure that in
the absence of inhibition, asynchronous encoder activity was capable
of driving the read-out neuron above threshold. For an oscillation
frequency of @ = 50 Hz, the threshold was required to satisfy & < 0.2,
and an oscillation frequency of @ = 100 Hz necessitated & < 0.08. We
accordingly fixed the threshold at a value of & =0.05.

2.2.1. Synchrony filtering

In Fig. 3, we set an oscillation frequency of @ = 50 Hz and plot the
activity of the read-out neuron (i.e., time spent above threshold) as a
function of encoder synchrony (n=20); the amplitude (5) and the
time course (h) of inhibition vary from panel to panel. When g =0 (i.
e., no inhibition), the read-out cell exhibits high levels of activity for
all levels of encoder synchrony. For nonzero values of 3, however, the
presence of phase-delayed inhibition creates a sharp synchrony
threshold—the read-out neuron remains quiescent until the enco-
ders reach a particular synchrony level, at which point the activity of
the read-out cell jumps dramatically. As apparent from Fig. 3, the
magnitude of inhibition has an effect on the synchrony threshold
only over a very small range of # values; once g exceeds a certain
minimal value, the synchrony threshold becomes fixed, and further
increases in inhibitory strength are inconsequential. The precise
minimum value of g after which the synchrony threshold becomes
fixed (B,,;;) depends on other system parameters; however, for all
system parameters studied, we found that g,,;, <8. The inhibitory
time course (h), on the other hand, has a dramatic effect on the
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Fig. 3. Effect of inhibitory amplitude and time course on synchrony detection using the simplified decoder model. (A) Without inhibition, the decoder does not act as a
synchrony detector. In (B), (C), and (D), the inhibitory time course h is lengthened for different values of the inhibitory amplitude g; with inhibition, the decoder acts as a
sharp synchrony filter, responding only to inputs exceeding a threshold level of synchrony. Increases in the time course h systematically increase the synchrony threshold,
while the amplitude g has little effect on synchrony filtering. Encoder number was given by n=20, the excitatory amplitude was fixed at « = 1, and the oscillation frequency

was set at w =50 Hz (T=20 ms).
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Fig. 4. Effect of inhibitory time course on synchrony detection using the simplified decoder model. The inhibitory amplitude 4 is fixed at a large value (5 = 1000), and the
response of the decoder is plotted as a function of input synchrony for varying values of the inhibitory time course h. For an oscillation frequency of (A) @ = 20 Hz (T=50 ms)
or (B) w =100 Hz (T=10 ms), the decoder responds only to inputs exceeding a threshold level of synchrony, with the value of the synchrony threshold depending on the time
course of inhibition h. The encoder number was set at n=20 and the excitatory amplitude was fixed at a = 1.

synchrony threshold; as h is lengthened, the synchrony threshold
systematically shifts towards perfect synchrony. Thus, for a particular
set of system parameters, there exists a range of h values between
hpmin and hy,qy such that: (1) for h <h,,;,, the read-out cell responds to
all levels of encoder synchrony, including the maximally asynchro-
nous state where the encoder phases are uniformly distributed over a
period; (2) for h=h,4, the read-out cell is quiet regardless of the level
of encoder synchrony; (3) by appropriately choosing h within the
interval (hyin, hmay), the synchrony threshold of the read-out neuron
can be set at any desired value.

In accordance with this result, we fixed the inhibitory amplitude
at a large value (5 =1000) and plotted the activity of the read-out
neuron for oscillation frequencies of »=20Hz (Fig. 4A) and
=100 Hz (Fig. 4B). Figs. 3 and 4 show that, regardless of the
oscillation frequency, lengthening the inhibitory time scale results in
a systematic right-shift of the synchrony threshold. Thus, we
conclude that the time scale of inhibition is the primary determinant
of the efficacy of phase-delayed inhibition as a synchrony filter, while
the inhibitory amplitude has little effect on synchrony filtering.

2.2.2. Number of neurons

In the above simulations, we fixed the number of encoder
neurons and number of inhibitory interneurons at n=20; however,
the question naturally arises as to how many encoders are required
in order for phase-delayed inhibition to act as an effective coin-
cidence detector. In order to address this, we fixed the inhibitory
amplitude at a large value (8=1000) and, for each oscillation
frequency, we set a characteristic inhibitory time scale to achieve a
synchrony threshold of ~0.5. In Fig. 5, we plot read-out cell activity as
a function of synchrony for varying values of n (where n is the
number of encoder neurons and inhibitory interneurons), showing
that phase-delayed inhibition can create a sharp synchrony threshold
using a relatively small number of encoders. In fact, a sharp threshold
is observed for neuron numbers as low as n=5, with further
increases in n exerting little influence on synchrony filtering. This
suggests that the sum of the 2n step functions (corresponding to the
n encoders and n inhibitory neurons) involved in computing read-out
cell activity converges rapidly in the large n limit, a limit which we
will utilize in subsequent analysis.

2.3. Integrate-and-fire decoder model

In the above work, we approximate the activity of a read-out
neuron by imposing a numerical threshold © on the sum of the 2n
inputs; since the inputs are described by step functions, it is not

too surprising that this simplified decoder model would lead to an
abruptly rising synchrony-response function for the hypothetical
read-out cell. The sum of 2n step functions is a step function, and
step functions have flat plateaus and basins rather than sharp
peaks and valleys. As synchrony is increased, the input step
functions exhibit greater and greater overlap, causing the sum to
have higher plateaus and deeper basins. Thus, as soon as syn-
chrony is high enough such that the sum of the step functions rises
above @, an entire plateau rises above O, causing read-out cell
activity to jump discontinuously at this synchrony value.

A physiologic read-out neuron, however, exhibits dynamics
that are more complex than can be captured by simply imposing a
threshold © on the sum of step function inputs. While synaptic
inputs to a physiologic read-out neuron are likely to be well
approximated by step functions, the membrane potential V(t) of
the decoder depends not only on synaptic conductance modula-
tions, but also on the membrane time constant as well as voltage-
dependent nonlinearities. Since membrane potential dynamics are
not instantaneous, the associated time scale of the response
implies that V(t) changes continuously, even when the synaptic
inputs are described by discontinuous step functions.

We therefore simulated a physiologic read-out cell using a
reduced dimensional integrate-and-fire model. By “reduced dimen-
sional” we mean that the membrane potential V is nondimensional,
while time t is in units of milliseconds and g is in units of ms™!. The
equation governing membrane potential is given by

(zi_‘t/ =-gV+i() (1)
where g is the leak conductance, Vo=0 is the resting potential, and
Vinresn=1 is the threshold for firing an action potential. In other
words, when WV(t) approaches Vs, from below, an action potential
is recorded and the membrane potential is reset to V. i(t) = 2i_ 41t
is the total input current from n excitatory encoder neurons and n
inhibitory interneurons. The effective j-th input is the sum of the
excitation from the j-th encoder and the inhibition from the
corresponding j-th interneuron.

a/n, if t(mod T)e(p;, ¢ + )
—p/n, if t(mod T)e(p; + ¢, @; +c+ h)
0, elsewhere

ij(t) =

where a,5,¢,h, T >0, c+ h < T and g is the relative phase of the j-th
neuron with ¢; : = 0. For simplicity, we assume the phases to be
uniformly distributed over a ‘window’ of size w<T, so that
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Fig. 5. Effect of encoder number on synchrony detection using the simplified decoder model. For oscillation frequencies of (A) @ =20 Hz (T=50 ms), (B) » =50 Hz
(T=20 ms), and (C) @ = 100 Hz (T=10 ms), the response of the decoder is plotted as a function of input synchrony for varying encoder numbers n. The decoder responds only
to inputs exceeding a threshold level of synchrony, and the value of the synchrony threshold rapidly approaches a limiting value for large n. The excitatory amplitude was
fixed at a =1 and the inhibitory amplitude was fixed at s = 1000.
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Fig. 6. Effect of inhibitory amplitude and time course on synchrony detection using the integrate-and-fire decoder model. Without inhibition (left column), the decoder fires
for all levels of input synchrony. In the presence of phase-delayed inhibition, the decoder acts as a sharp synchrony filter, firing only if its inputs exceed a particular threshold
level of synchrony. Increases in either the time course h or the amplitude g of inhibition yield increases in the value of the synchrony threshold, with very large values of h or
p rendering the decoder unable to respond for any synchrony level. Encoder number was fixed at n=20 and net excitatory amplitude was set to « = 8. For @ =20 Hz, the
inhibitory time courses were h=0, 3, 15 ms. For o = 50 Hz, the inhibitory time courses were h=0, 3, 6 ms. For w = 100 Hz, inhibitory time courses were h=0, 3, 4 ms.
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@;j =—(j-T)w/n. The level of encoder synchrony (ranging from 0 to 1)
is therefore given by 1-(w/T).

Thus, we modeled the synaptic input i(t) as the sum of the 2n step
functions representing inputs from the n encoders and n inhibitory
neurons, as described in the Model of Encoder and Interneuron
Spikes section. Within the simplified decoder model, we simulated a
low spike threshold (relative to the net excitatory strength a« = 1) by
setting ® = 0.05. With the integrate-and-fire decoder, spike thresh-
old is fixed, and hence we set the excitatory strength at a high value
(a=18) in order to ensure a spike threshold that is low relative to a.
Synchrony levels ranging from 0 to 1 were simulated by evenly
distributing encoder spike times throughout progressively smaller
time windows within each Tms period. Using computational simu-
lations, we found that the results obtained above using a numerical
threshold & translated relatively unchanged to the case of the
integrate-and-fire read-out neuron. The integrate-and-fire decoder
behaves as a sharp synchrony filter for relatively small n (as low as
n=>5), with further increases in n having little effect on coherence
detection (data not shown). Additionally, the time course of inhibi-
tion (h) plays a vital role in determining the synchrony filtering
properties of the read-out cell, with increases in h yielding systematic
right-shifts of the synchrony threshold (Fig. 6).

However, Fig. 6 shows that synchrony filtering also appears to be
sensitive to the amplitude of inhibition (8)—increases in g lead to
right-shifts of the synchrony threshold, with very large g rendering
the decoder unable to respond to any inputs. This is different from
the results obtained using the simplified model of a numerical
threshold @, a discrepancy which can be explained by the fact that
the time course of the response of an integrate-and-fire neuron
directly depends on the amplitude of the input. In other words, given
two step function inputs with the same time course but different
amplitudes, the membrane potential V(t) takes longer to decay in
response to the larger amplitude input than in response to the
smaller amplitude input. In terms of V(t), increasing g effectively
increases h as well. Thus, we conclude that phase-delayed inhibition
can serve as a robust mechanism to transform a read-out neuron into
a sharp synchrony filter, with the time scale of inhibition (relative to
the time scale of excitation) being key in determining the level of
synchrony required to induce the decoder to spike.

2.3.1. Mathematical analysis

Above, we presented computational results on the synchrony
detection properties of the integrate-and-fire decoder for various
system parameter values. As shown in Fig. 6, we found that the
integrate-and-fire decoder behaves as a sharp synchrony filter—
below a threshold level of encoder synchrony the decoder does not
spike, while above this synchrony threshold the firing rate of the
decoder jumps to high values. It follows that the synchrony threshold
represents the level of encoder synchrony at which the read-out cell
transitions from quiescence to repetitive spiking. In this section, we
use this observation to develop analytical results on the synchrony
detection properties of the integrate-and-fire decoder.

When the integrate-and-fire decoder is quiescent, an analytical
solution to the membrane potential equation can be easily
obtained in the case of the limit n—« (where n is the number of
encoders and also the number of interneurons), and this solution
is valid as long as the membrane potential of the decoder remains
below the spike threshold (Vipresn=1). Using the analytical solu-
tion to the membrane potential equation of the integrate-and-fire
decoder, we explicitly calculate the synchrony threshold as a
function of system parameters, and in particular we examine the
relationship between the synchrony threshold of the decoder and
the strength of excitation « (with other system parameters fixed).

Suppose we fix the system parameters 4, c, h, T, and we set the
level of encoder synchrony at a particular value s. Since « is the

strength of excitation received by the read-out neuron, the read-
out neuron will be quiescent for sufficiently low values of a, while
for sufficiently high values of «, the read-out neuron will fire
repetitively. For a critical value of « (which we denote by «.) the
readout neuron undergoes a transition from quiescence to repe-
titive firing mode, as « is increased continuously. We can explicitly
calculate «. for different levels of encoder synchrony s, and the
function a(s) provides us with insight into the synchrony filtering
properties of the system. The details of the calculations are
provided in Supplementary Material.

In order to demonstrate how phase delayed inhibition provides
a mechanism for synchrony filtering, we plot in Fig. 7A a graph of
the critical value of a (ac(s)) as a function of the level of encoder
synchrony s for g = 0 (no inhibition) and g = 8 (with phase delayed
inhibition). For g=0, a(s) is almost horizontal; in fact, we find
that a-(0.75) = 0.25 while a.(1) = 0.227, which implies that « must
be fine-tuned within a narrow band in order for the read-out
neuron to act as a synchrony filter. If a is set at a value below this
narrow band (i.e., if « < 0.227), then the decoder will be quiescent
for all levels of encoder synchrony. If « is set at a value above this
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Fig. 7. Critical value of a(a.) required for the integrate-and-fire decoder to spike as
a function of synchrony. (A) The inhibitory amplitude was fixed at a value of =0
or f=38. In the absence of inhibition, a synchrony threshold exists over a very
narrow range of a values. With phase-delayed inhibition, a synchrony threshold
exists over a broader range of « values. (B) The inhibitory amplitude was varied
with the excitatory amplitude (3=a). So long as « is sufficiently large, the
synchrony threshold remains almost entirely untouched by changes in «. Other
parameters were fixed at c=3 ms, h=5 ms, w = 50 Hz (T=20 ms).
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narrow band (i.e., if a>0.25), then the encoder will spike
repetitively for all levels of encoder synchrony. For a within this
narrow band (i.e., for 0.227 <¢<0.25), tiny changes in « result in
large changes in the synchrony threshold (the level of encoder
synchrony at which the transition from no spiking to spiking
occurs). Thus, for =0, which corresponds to the case of the
synchrony detector employing a high spike threshold, the system
exhibits a startling lack of robustness—the strength of the excita-
tion « must be set within a very narrow band in order for the read-
out neuron to have a synchrony threshold, and even within this
narrow band, slight fluctuations in « entail radical shifts in the
synchrony threshold of the read-out cell. On the other hand, for
large, positive g (i.e., for a synchrony detector employing phase-
delayed inhibition), for instance g = 8, we find that a.(0.75) = 8.58
and a.(1) =6.23; compared to the no inhibition case, there is a
larger range of « over which the read-out neuron has a synchrony
threshold. For the phase-delayed inhibition case, the system
therefore exhibits a greater degree of robustness—for values of «
for which a synchrony threshold exists (i.e.for 6.23<a<8.58),
small changes in « yield less drastic shifts in the synchrony
threshold of the read-out cell.

In the second graph (Fig. 7B), the strength of inhibition is kept
proportional to the strength of the excitation—we plot a. as a
function of s for g =a. When the strength of inhibition g is varied
with the strength of excitation «, we find that synchrony filtering
is exceptionally robust. As the nearly vertical portion of the graph
in Fig. 7B suggests, sufficiently high values of « yield a read-out
neuron with practically invariant synchrony filtering properties—
the synchrony threshold of the read-out cell remains essentially
untouched even when « is changed considerably.

Thus, synchrony filtering in the no inhibition case (3 = 0) exhibits
a delicate sensitivity to «, while for constant (nonzero) g the
synchrony threshold is more robust to fluctuations in the strength
of excitation «. On the other hand, for a« =  the synchrony threshold
is nearly immune to changes in « (as long as « is sufficiently large).
This implies that a decoder employing phase-delayed inhibition has a
synchrony threshold that is more robust to variations in the strength
of excitation « than a decoder utilizing a high spike threshold;
moreover, the synchrony threshold of the phase-delayed inhibition
decoder is exceptionally robust to fluctuations in « if the strength of
excitation « and the strength of inhibition g vary together.

In a real neuronal system, if a read-out neuron employing phase-
delayed inhibition receives input from n encoders (so that each
excitatory encoder input has strength a/n and each inhibitory
interneuron input has amplitude g/n), it is likely that encoder activity
is noisy, and so the number of the n encoders that actually fire a
spike will vary considerably from one oscillation cycle to the next.
The net excitatory and inhibitory input amplitude will therefore vary
from period to period, but they will vary together (i.e., if k encoders
fire during a particular oscillation cycle, the read-out neuron will
receive a net excitation of ka/n and a net inhibition of kg/n). Since
the synchrony threshold is relatively invariant to changes in n, this is
effectively equivalent to « and g varying from period to period with
the ratio «/# remaining constant. Thus, it is likely that Fig. 7B is most
relevant to the robustness required of a real neuronal synchrony filter
utilizing phase-delayed inhibition, and Fig. 7B shows that in the case
that the ratio «/p is held fixed phase-delayed inhibition creates a
synchrony threshold that is incredibly robust to fluctuations in
encoder activity.

2.3.2. Phase-delayed inhibition vs high spike threshold

The analytical results of the previous section imply that a read-
out neuron employing phase-delayed inhibition is capable of
robustly detecting encoder synchrony superimposed on a back-
ground of noisy encoder activity, while the synchrony detection

properties of a read-out cell utilizing a high spike threshold are
exquisitely sensitive to the background noise. Since it is well
known that biological systems are inherently noisy, robustness
to noise may provide the answer to the question of why the
elaborate network architecture needed to implement phase-
delayed inhibition would evolve in real neuronal systems. Below,
we present computational results on the integrate-and-fire deco-
der model that complement the analytical results of the previous
section. We examine the robustness of the synchrony threshold in
the case of a phase-delayed inhibition decoder versus in the case
of a high spike threshold decoder in two key ways: (1) we fix the
number of encoders that fire during an oscillation cycle and vary
the strength of individual encoder and interneuron inputs; (2) we
fix the strength of individual encoder and interneuron inputs and
vary the number of encoders that fire during an oscillation cycle.

2.3.2.1. Input strength. As shown in the analytically derived results
of Fig. 7A, phase-delayed inhibition creates a synchrony threshold
that is more resistant to small variations in the strength of
excitation « than that created using a high spike threshold
(where, with n encoders, the strength of an excitatory input
spike from an encoder is given by a/n). In other words, if a read-
out neuron employs phase-delayed inhibition (with a relatively
low spike threshold), small changes in « (with the inhibitory
amplitude g held fixed) cause relatively small changes in the value
of the synchrony threshold. If, on the other hand, a read-out
neuron utilizes a relatively high spike threshold (without
inhibition), then even slight changes in «a entail substantial shifts
in the value of the synchrony threshold. This analytically derived
insight is supported by the computational results presented in
Fig. 8A. In Fig. 8A, we vary the strength of excitatory encoder
inputs « while fixing the amplitude of inhibitory interneuron
inputs g and fixing the number of encoders that fire during an
oscillation cycle at n. Fig. 8A shows that phase-delayed inhibition
creates a synchrony threshold that is more robust to changes in «
than a high spike threshold decoder.

Moreover, we found that if « and g are varied simultaneously,
with the ratio «/# held fixed, then phase-delayed inhibition is
even more robust—remarkably, the synchrony threshold remains
untouched over a vast range of a« and g values. In fact, as
demonstrated by the analytically derived results in Fig. 7B, the
synchrony threshold rapidly approaches an asymptotic value as «
and g rise with the ratio a/p kept constant. Fig. 8B provides a
computational complement to the analytic approach. In Fig. 8B, we
simultaneously vary the strength of excitation « and the amplitude
of inhibition g with the ratio of the two held fixed at a/f=1.
Fig. 8B shows that phase-delayed inhibition creates a synchrony
threshold that is staggeringly robust to changes in « when « and g
co-vary. This behavior occurs because a fixed value of a/p implies
that the ratio of the time interval over which excitatory inputs
decay to the time interval over which inhibitory inputs decay
remains constant (if «/g = 1, then excitatory and inhibitory inputs
decay over similar time intervals). Thus, with «/p fixed, the length
of inhibitory input currents h is the sole determinant of the
relative time course of inhibition and excitation, implying that
the value of the synchrony threshold depends on h alone. This is
assuming, as we have, that the length of excitatory input currents ¢
is held constant (it is really the ratio h/c that determines the
synchrony threshold). Note that this result implies that the more
realistic integrate-and-fire decoder behaves in a virtually identical
manner to our simplified decoder model given by a numerical
threshold @ imposed on the sum of step function inputs; fixing the
ratio a/p effectively disentangles the amplitude from the time
course of synaptic modulations of the integrate-and-fire decoder,
and, as seen with the simplified decoder model, the synchrony
threshold in the integrate-and-fire decoder is seen to exhibit a
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Fig. 8. Robustness of synchrony filtering using phase-delayed inhibition vs high spike threshold within the integrate-and-fire decoder model. (A) With a high spike threshold
(and no inhibition), a 10% change in the strength of total excitation « leads to large changes in the value of the synchrony threshold. If phase-delayed inhibition is employed, a
10% change in « entails smaller changes in the value of the synchrony threshold. (B) When using phase-delayed inhibition to create a synchrony filter, if the ratio of net
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time course of inhibition (h). In the right panel, the blue, green and red curves overlap completely and hence cannot be visually distinguished. (C) Encoder number was fixed
at n=20, with the amplitude of each individual encoder input given by «/n and the amplitude of each individual interneuron input given by —3/n. The parameters a, 3, h,c
were fixed in each panel, but rather than having all n encoders spike during an oscillation cycle, we designated a number k of the n encoders to spike during the oscillation
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phase-delayed inhibition is employed, then even large changes in k lead to minimal deviations in the value of the synchrony threshold. Data shown are for an oscillation

frequency of @ =50 Hz (T=20 ms).

critical dependence on the time course of inputs alone (with the
amplitude having little impact).

2.3.2.2. Input number. Phase-delayed inhibition (with a low
decoder spike threshold) allows for the creation of a dynamic
synchrony filter capable of adapting to fluctuating input, while
imposing a high spike threshold on the decoder (without phase-
delayed inhibition) creates a stringent filter that is unable to
dynamically accommodate variations in presynaptic activity. If a
read-out cell receives input from n encoders, then, in a noisy
neuronal system, the actual number of encoder spikes may vary
considerably from one oscillation cycle to the next. A high spike
threshold implies that a certain number, say m, of those n
encoders must fire concurrently in order to drive the decoder.
This number m is invariant—regardless of how many of the n
encoders fire during an oscillation period, at least m of these

encoders must spike coherently to activate the read-out neuron.
The level of synchrony (i.e., the fraction of input spikes that are
coincident) required to drive the decoder therefore depends on
the total number of encoders that fire during any given oscillation
period. If a relatively small number of encoders fire during
a given oscillation cycle, then a high proportion of them must be
coincident to cause the decoder to spike, while if a relatively large
number of encoders fire during a given oscillation cycle, a smaller
fraction of them must be synchronous in order to activate the
decoder. Phase-delayed inhibition, on the other hand, creates a
read-out cell with a bona-fide synchrony threshold: irrespective of
the exact number of encoder spikes during any particular
oscillation period, a fixed fraction of those input spikes must
temporally coincide in order to trigger the decoder. In Fig. 8C, we
fix a, #, and n (so that the strength of each excitatory encoder input
is fixed at a/n and the amplitude of each inhibitory interneuron
input is fixed at /n), and we vary the number k of the n encoders



M. Patel, B. Joshi / Journal of Theoretical Biology 334 (2013) 13-25

that fire during an oscillation cycle. Fig. 8C shows (computationally)
that the synchrony threshold of the high spike threshold decoder is
highly sensitive to variations in k, while the synchrony threshold of
the phase-delayed inhibition decoder exhibits minimal shifts with
even large changes in k.

2.4. Synchrony filtering in noisy networks

In the above investigation on the integrate-and-fire decoder
model, we made several biologically unrealistic assumptions in
order to simplify analysis, allowing us to provide intuitively
transparent results on the synchrony filtering properties of
phase-delayed inhibition versus a high spike threshold. However,
it is important to verify that the results obtained under these
simplifying assumptions are applicable in a more biologically
realistic setting. In this section, we obtain results using the
integrate-and-fire decoder model with encoder and inhibitory
interneuron inputs constructed in a more biologically realistic
manner.

In the above results, encoder spike phases were deterministi-
cally distributed throughout a T ms period, with increasing
synchrony simulated by distributing spike phases evenly through-
out smaller and smaller subintervals of the T ms period. Biological
networks, however, are inherently noisy, and hence in this section
we distribute encoder spike phases in a stochastic manner. We
simulate a synchrony level of s=0 by drawing encoder spike
phases from a Gaussian distribution centered at the midpoint of
a T ms period with a standard deviation of T ms; as the level of
synchrony is increased from s=0 to s=1, the standard deviation of
the Gaussian is decreased linearly from T to O ms. Moreover, in the
above results we simulated encoder and inhibitory interneuron
spikes as step function inputs to the integrate-and-fire decoder,
with «, g denoting the amplitude and c, h denoting the time course
of the encoder and inhibitory interneuron input step functions,
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respectively. A more realistic description of synaptic inputs is
given by a step function jump followed by exponential decay (Roth
and van Rossum, 2009). In this section, we therefore simulate
synaptic inputs to the integrate-and-fire decoder in a more
realistic manner, with a, # denoting the size of the step function
jump and c, h denoting the time scale of exponential decay of
encoder and inhibitory interneuron inputs, respectively. Addition-
ally, for further realism we incorporate stochasticity into the
synaptic delay d between the arrival times of encoder and
inhibitory interneuron inputs by drawing d from a Gaussian
distribution with mean 3 ms and standard deviation denoted by
delaysd. Finally, since in a realistic setting each encoder spike may
not elicit an inhibitory interneuron spike, we set a probability of
synaptic failure of inhibitory interneuron spikes, with the para-
meter fail (written as a percentage) denoting the chance that an
encoder spike does not elicit a corresponding inhibitory
interneuron spike.

In the simulations presented in this section, standard values of
the network parameters mentioned above are given by the
following: a=pf=4, c=h=3ms, delaysd=1ms, fail=2%. The
standard number of encoders is set at n=100 and the oscillation
period is set at T=20 ms. Unless otherwise stated, all simulations
are performed with these standard parameter values.

In Fig. 9, we plot simulation results on the synchrony filtering
properties of an integrate-and-fire decoder employing phase-
delayed inhibition in this more biologically realistic setting.
Fig. 9 (top left) shows that, while synchrony response curves are
noisy, the decoder continues to exhibit sharp synchrony filtering
properties, with increases in the amplitude g or decay time scale h
of inhibition causing a rightward shift in the value of the
synchrony threshold. However, as shown in the top right panel, a
larger number n of encoder neurons and inhibitory interneurons is
required to achieve a sharp synchrony threshold than in the
simplified model presented in the previous section (in the
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Fig. 9. Synchrony filtering using an integrate-and-fire decoder in a noisy, biologically realistic network (see text for model details). Similar to the deterministic case, the
decoder possesses a sharp synchrony threshold, with the value of the synchrony threshold increasing with increases in the amplitude (f =4 to g =5) or time course (h=3 to
h=4) of inhibition (top left). Synchrony filtering is shown for varying encoder numbers n (top right) and for varying degrees of stochasticity in the synaptic delay (bottom left;
synaptic delays are drawn from a Gaussian distribution with mean 3 ms and different standard deviations), and a varying probability of synaptic failure (bottom right; failure
probability shown as a percentage). Data shown are for an oscillation frequency of w =50 Hz (T=20 ms).
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Fig. 10. Phase-delayed inhibition versus a high spike threshold using an integrate-and-fire decoder in a noisy, biologically realistic network (see text for model details). Left:
Synchrony filtering with phase-delayed inhibition. As in the deterministic case, if the ratio /g is held fixed (i.e., if the decoder receives excitation and inhibition in fixed
proportion), phase-delayed inhibition creates an exceptionally robust synchrony threshold (« and g are varied from baseline by 25% in the panel). Right: Synchrony filtering
with a high spike threshold. Varying the amplitude of excitation « by 25% causes drastic changes in the synchrony filtering properties of the decoder. Data shown are for an

oscillation frequency of w =50 Hz (T=20 ms).

biologically realistic setting, a minimum of ~n=40 is needed,
while in the simplified model of the previous section a minimum
of ~n =10 is required). This discrepancy can be explained by the
stochastic nature of encoder spike phases in the biologically
realistic setting—a larger number of cells n is required in order
for the decoder to be able to respond to the mean behavior of
arrival times of encoder and inhibitory interneuron spikes. In the
bottom left panel, we show that significant variations in delaysd
have little effect on the synchrony filtering properties of the
decoder, implying that while a synaptic delay between excitatory
and inhibitory inputs is needed, the exact value of the synaptic
delay has little bearing on the response properties of the decoder.
In the bottom right panel, we show that increasing the synaptic
failure parameter fail reduces the sharpness of the synchrony
threshold—this occurs because a higher level of synaptic failure
diminishes the net inhibition impinging upon the decoder, miti-
gating the efficacy of the phase-delayed inhibition architecture.

In Fig. 10, we compare the synchrony filtering properties of a
decoder employing phase-delayed inhibition versus a decoder
utilizing a high spike threshold in a biologically realistic setting.
In the left panel, we show that a decoder employing phase-delayed
inhibition exhibits incredibly robust synchrony filtering properties
in the case that excitation and inhibition are balanced (i.e., if the
ratio a/p is held fixed). This is consistent with the results from the
previous section, implying that phase-delayed inhibition (in which
network architecture automatically creates balanced levels of
excitation and inhibition delivered to the decoder) allows for
strikingly sharp and robust synchrony detection. In the right panel,
we show that a decoder employing a high spike threshold displays
no such robustness; even after fine-tuning a to create as sharp a
synchrony detector as possible, we find that the synchrony
threshold is not as sharp as in the phase-delayed inhibition case
and that the effectiveness of synchrony filtering is dramatically
diminished by small variations in a.

3. Discussion

Neuronal populations within a diverse array of brain regions
encode and transmit information through synchronized oscilla-
tions, implying that a mechanism must exist that is capable of
decoding the coherent, periodic activity of a group of neurons.
Two realistic mechanisms exist for designing such a decoder
neuron: (1) imposing a relatively high spike threshold on the
decoder, or (2) employing a phase-delayed inhibition network

motif. The manner in which a high spike threshold can create a
decoder neuron that acts as a coincidence detector is obvious. In
this work, we have shown that phase-delayed inhibition can also
enable a decoder to act as a high-pass synchrony filter, in the sense
that below a threshold level of input synchrony, the spiking
response of the read-out cell is virtually nonexistent, but as soon
as the inputs exceed this synchrony threshold the decoder's
response jumps to high values. Moreover, we have demonstrated
that the time course of inhibition plays a pivotal role in determin-
ing the synchrony threshold.

Furthermore, we have shown that phase-delayed inhibition
provides for more robust synchrony filtering than a high spike
threshold, explaining its utilization despite the necessity for a
more intricate network architecture. Phase-delayed inhibition was
found to be more robust to fluctuations in both input strength and
input number than a high spike threshold. Robustness to input
number is a particularly important quality, since a decoder of
synchronized oscillations in a real neuronal system is likely to
receive a variable number of encoder spikes from one oscillation
period to the next. With phase-delayed inhibition, the decoder
requires a particular minimum level of synchrony among its inputs
(i.e., a fixed fraction of input spikes must temporally overlap),
regardless of the exact number of encoder spikes impinging upon
the decoder. In contrast, a high spike threshold creates a decoder
whose synchrony filtering properties vary drastically with fluctua-
tions in the number of encoder spikes.

Thus, phase-delayed inhibition can be viewed as adaptively
regulating the effective spike threshold of the decoder to filter out
background noise. In the presence of a small amount of back-
ground encoder noise, phase-delayed inhibition sets the spike
threshold of the decoder at a relatively low value (i.e., a small
number of synchronous encoder spikes must occur in order to
activate the decoder). In the presence of a large amount of
background encoder noise, phase-delayed inhibition sets the spike
threshold of the decoder at a relatively high value (i.e., a large
number of coincident encoder spikes are required in order to
trigger the decoder). This type of adaptive regulation of the read-
out cells's spike threshold can also be attained by using a high
spike threshold decoder (without inhibition) to detect synchrony,
provided that the strength of excitatory synapses is plastic; if the
strength of excitatory synapses varies inversely with the net
amount of encoder activity, a high spike threshold decoder may
be able to perform the same computations as a phase-delayed
inhibition decoder. The likely advantage of using phase-delayed
inhibition, rather than a high spike threshold decoder with plastic
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synapses, is that phase-delayed inhibition allows essentially
instantaneous regulation of the effective spike threshold of the
decoder, while synaptic plasticity requires time in order to
respond to a particular level of net encoder activity. In systems
that exhibit synchronized oscillations, encoder activity may vary
considerably from one oscillation cycle to the next, and so a
mechanism that instantaneously tracks changing levels of net
encoder activity (such as phase-delayed inhibition) would be far
better than a mechanism which tracks changing levels of net
encoder activity more slowly (such as a high spike threshold
decoder with synaptic plasticity).

3.1. Decoder models

In our investigations, we used both a simplified model of
decoder activity (a threshold © imposed on the sum of the step
function inputs) as well as a more realistic integrate-and-fire read-
out neuron model. Perhaps surprisingly, the results obtained using
the simplified model were highly concordant with those produced
by the more realistic model, suggesting that, for certain purposes,
step function inputs along with an arbitrarily imposed threshold
may provide an accessible yet accurate approximation to neuronal
activity. One essential advantage of the simplified model is the
ability to cleanly tease apart the amplitude from the time course of
an input, which allowed us to generate clear-cut results on the
individual effects of g or h. With an integrate-and-fire decoder,
however, the time course and magnitude of an input are inex-
tricably linked; since the membrane potential V(t) exhibits non-
instantaneous dynamics, large inputs take longer to decay than
smaller inputs. Thus, the consequences of varying g versus those of
changing h are intermingled (compare Figs. 3 and 6).

3.2. Other modeling work

There is a vast body of prior work on balanced networks (i.e.,
networks in which neurons receive proportional amounts of
excitation and inhibition). In a balanced network, the mean level
of inhibition impinging upon a neuron tends to cancel the mean
level of incoming excitation—a neuron therefore spikes sporadi-
cally and irregularly, when an instantaneous fluctuation in the net
inhibitory and/or net excitatory current to the cell allows its
membrane potential to climb to threshold (e.g., see Shadlen and
Newsome, 1994; Troyer and Miller, 1997; Amit and Brunel, 1997;
van Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Kumar et al.,
2008; Vogels and Abbott, 2009). The principle of balanced excita-
tion and inhibition applies to the phase-delayed inhibition archi-
tecture. The decoder neuron within a phase-delayed inhibition
scheme receives proportional amounts of excitation and inhibi-
tion, with the mean level of inhibitory interneuron input canceling
the mean level of excitatory encoder input, and the decoder fires
only if encoder synchrony causes large moment-to-moment fluc-
tuations in the net amount of excitation and inhibition to the
decoder.

Burck and van Hemmen (2009) studied phase-delayed inhibi-
tion using a mathematical approach. These authors modeled a
population of input and output neurons as inhomogeneous Pois-
son processes, with spikes of the input population feeding both
excitation and temporally lagging inhibition to the output popula-
tion. The activity of the input population was oscillatory, and the
authors studied the dependence of the preferred frequency of the
output population on the time constant of excitation, the time
constant of inhibition, and the delay between excitation and
inhibition. Kremkow et al. (2010a,b) constructed a computational
neuronal network model to show that the presence of inhibition
staggered in time can suppress the response of a read-out neuron
to asynchronous inputs, as well as sharpen the temporal precision

of read-out cell spikes. Moreover, the authors show that embed-
ding time-delayed feedforward inhibition within a synfire chain
allows selective propagation of synchronous inputs, and further
that embedding the phase-delayed inhibition architecture within a
larger network provides a method for gating of incoming signals.
Akam and Kullmann (2010) also adopted a computational
approach, and showed that a network of inhibitory interneurons
that supply feedforward inhibition with a temporal delay can
allow selective transmission of a synchronized, oscillating input
(within a particular frequency band) in the presence of several
asynchronous distractor stimuli. Assisi et al. (2007) showed that a
circuit utilizing phase-delayed inhibition can maintain sparse
read-out cell activity over a broad range of stimulus intensities
(see below). The authors of the present paper have shown in other
work that stimuli encoded by synchronous activity of a neuronal
population can be decoded in both a reliable and stimulus-specific
manner by a phase-delayed inhibition architecture, but not by a
decoder employing a high spike threshold (Joshi and Patel, 2013).
However, these models, while examining properties of phase-
delayed inhibition and exploring its possible physiological roles,
do not address the fundamental computation performed by the
phase-delayed inhibition architecture. In this paper, we frame the
problem of phase-delayed inhibition in its most mathematically
simplified form, allowing us to precisely delineate the nature of
the computation performed by a synchrony detection mechanism
employing phase-delayed inhibition.

3.3. Real neural systems

The phase-delayed inhibition motif likely exists in a variety of
neural systems as a means to decode synchronized oscillations;
two representative examples include the locust olfactory system
and the barn owl optic tectum. The locust antennal lobe (AL)
receives direct input from olfactory receptor cells and exhibits a
20 Hz network oscillation in response to odor stimulation, with
odor features modulating the identity of active neurons but having
no effect on oscillation frequency (Laurent and Naraghi, 1994;
Mazor and Laurent, 2005; Wehr and Laurent, 1996). Approxi-
mately 800 excitatory projection neurons (PNs) within the AL
project to a large array of ~50,000 Kenyon cells (KCs), with each
KC reading from ~400 PNs (Jortner et al., 2007). PN axons also
innervate the lateral horn, a structure consisting of GABAergic
interneurons which may supply vigorous, phase-delayed inhibi-
tion to the KC decoders (Leitch and Laurent, 1996; Perez-Orive
et al.,, 2002). Prior modeling work has shown that this feedforward
inhibitory circuit may contribute to KC coincidence detection
properties and in maintaining sparse KC odor representations over
a broad range of odorant concentrations (Assisi et al., 2007; Perez-
Orive et al., 2004). This result is encompassed by the more general
investigation of phase-delayed inhibition carried out in this paper;
our results show that decoder activity jumps and rapidly saturates
once the inputs exceed a certain threshold level of synchrony, and
since increasing odorant concentration increases PN synchrony
within the locust AL, our results imply that KC responses will
remain invariant to changes in odor concentration (so long as PN
synchrony exceeds a threshold value). Examination of KC odor
representations in light of the principles of phase-delayed inhibi-
tion presented in this paper may yield further insights into this
system.

Within the deep layers of the barn owl optic tectum (OT), cells
respond to both visual and auditory stimuli and are topographi-
cally organized, with adjacent cells displaying neighboring spatial
receptive fields (Knudsen, 1982, 1983; Knudsen and Brainard,
1991; Knudsen and Knudsen, 1983). Auditory and visual stimuli
within a restricted region of space elicit coordinated, 25-90 Hz
gamma oscillations in cells located at the corresponding location
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within the topographically organized OT. Interestingly, the spatial
tuning curve and contrast-response function of an OT site vary
depending on whether responses are measured in terms of firing
rate or gamma power, suggesting that spike rate and gamma
oscillations may be used to relay information in parallel (Patel and
Reed, 2013; Sridharan et al., 2011). Tectal fibers stream towards the
nucleus rotundus of the thalamus, emanating collaterals en-route
to innervate the GABAergic pretectal nuclei, whose axons course
towards rotundal cells as well (Benowitz and Karten, 1976; Deng
and Rogers, 1998; Karten et al., 1997; Karten and Revzin, 1966;
Luksch et al., 1998; Mpodozis et al., 1996; Tombol et al., 1994).
Neurons of the nucleus rotundus are therefore in an ideal position
to use phase-delayed inhibition to selectively decode the synchro-
nized gamma oscillations of their tectal inputs (Patel and Reed,
2013).

In addition providing a method for deciphering periodic net-
work behavior, phase-delayed inhibition has also been shown to
assist in the decoding of population activity that is not necessarily
oscillatory. In these cases, phase-delayed inhibition may still play a
similar role in allowing a read-out cell to act as a coincidence
detector or shortening the temporal window over which a read-
out neuron can integrate excitatory inputs. Hippocampal pyrami-
dal neurons have been shown to receive direct excitation via
Schaffer collaterals as well as disynaptic inhibition from the same
source with a time delay of ~2 ms, causing these cells to behave as
coincidence detectors (Fricker and Miles, 2000; Pouille and
Scanziani, 2001). Within the auditory cortex, investigators have
demonstrated that excitatory and inhibitory inputs to cortical cells
have similar frequency and intensity tuning; inhibitory inputs,
however, arrive with a 1-4 ms delay relative to excitatory inputs,
sharpening the temporal precision of cortical cell spikes (Wehr
and Zador, 2003). The cerebellum is thought to play a crucial role
in the coordination of movements over millisecond time scales,
and to that end cerebellar Purkinje cells are thought to act as
precise coincidence detectors within a circuit employing phase-
delayed inhibition. Parallel fibers produce direct excitation, as well
as indirect inhibition via molecular layer interneurons, within
Purkinje cells, with excitation preceding inhibition by 1-2 ms
(Mittmann et al., 2005). Phase-delayed inhibition has also been
observed within the lateral geniculate nucleus (LGN) of the
thalamus. Within LGN neurons, IPSPs have been recorded that
are locked to EPSPs induced by retinal ganglion cells (RGC), in the
sense that each EPSP is followed with a 1 ms time lag by an IPSP;
furthermore, these locked IPSPs have been shown to sharply
curtail the time window over which LGN neurons can respond to
excitation, enhancing the temporal precision of LGN spiking (Blitz
and Regehr, 2005).

In this paper, we studied phase-delayed inhibition as a method
for decoding synchronized oscillations, and we therefore derived
results in the steady-state case (i.e., we discarded the first few
oscillation cycles in order to disregard the initial transient beha-
vior of the decoder). In systems that utilize phase-delayed inhibi-
tion without oscillations, the effects of inhibition are likely to be
better described by the initial transient behavior of the decoder (i.
e., by the decoder response within the first oscillation cycle). In
preliminary investigations, we have seen that similar general
principles to those presented in this paper may govern the initial
transient behavior of the decoder.

Finally, it would be a relatively simple matter to experimentally
verify the results presented in this paper. Using an in vitro
preparation, an investigator could simulate encoder and inter-
neuron inputs by injecting excitatory and inhibitory current pulses
into a single neuron. By appropriately modulating the timing and
amplitude of the current pulses, the spiking activity of the neuron
would then be indicative of the response of a decoder of phase-
delayed inhibition.

4. Methods

The construction of step function inputs, and the simplified
decoder model in which we impose a numerical threshold @ on
the step function sum, are described in full detail in the Model
Construction section of the Results. The integrate-and-fire decoder
model was governed by the following equation:

dv

dt

where V(t) is the membrane potential, g is the leak conductance,
and V=0 is the resting potential. The model is nondimensiona-
lized, with g=0.05 ms™!, a nondimensional membrane potential,
time in units of ms, and the synaptic input i(t) having units of
ms~!. A spike was recorded when V(t) reached a threshold value
Vinresn=1, with V(t) being instantaneously reset to rest following a
spike. An absolute refractory period of 2 ms was simulated by
holding the membrane potential at rest for 2 ms following a spike.
Simulations were also performed with no refractory period and a
refractory period of 1 ms, which yielded similar results. Details of
the nondimensional model are given in Tao et al. (2004).

We chose an integrate-and-fire model because we were pri-
marily concerned with the number of spikes generated, rather
than the precise timing of individual spikes, and hence detailed
modeling of a spike generation mechanism was unnecessary.
Additionally, we modeled synaptic inputs as current-based, rather
than conductance-based, in order to simplify the mathematical
analysis that we carry out in the Results section. All simulations
were also performed using conductance-based inputs, which
yielded similar results.

The synaptic input i(t) was described as the sum of the
excitatory and inhibitory step function inputs to the neuron, as
described in the Results. Spike rates were measured by averaging
over ~5 oscillation cycles, after discarding the first several oscilla-
tion cycles in order to ignore the initial transient and to measure
only steady-state responses. Simulations were carried out using
the explicit Euler method with a time step of 0.001 ms. The small
time step required for convergence of the numerical method was a
consequence of the discontinuous synaptic inputs.

=—gV +i(b),
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