
2WAYNE AITKEN and JEFFREY A. BARRETT

3STABILITY AND PARADOX IN ALGORITHMIC LOGIC

4Received on 25 May 2005

5ABSTRACT. There is significant interest in type-free systems that allow flexible

6self-application. Such systems are of interest in property theory, natural

7language semantics, the theory of truth, theoretical computer science, the

8theory of classes, and category theory. While there are a variety of proposed

9type-free systems, there is a particularly natural type-free system that we believe

10is prototypical: the logic of recursive algorithms. Algorithmic logic is the study

11of basic statements concerning algorithms and the algorithmic rules of inference

12between such statements. As shown in [1], the threat of paradoxes, such as the

13Curry paradox, requires care in implementing rules of inference in this context.

14As in any type-free logic, some traditional rules will fail. The first part of the

15paper develops a rich collection of inference rules that do not lead to paradox.

16The second part identifies traditional rules of logic that are paradoxical in

17algorithmic logic, and so should be viewed with suspicion in type-free logic

18generally.

19KEY WORDS: abstraction, algorithmic logic, curry paradox, type-free logic

211. INTRODUCTION

22In second-order logic, one distinguishes between two types of objects.

23First-order objects are the basic objects of interest. Second-order objects

24are the properties and classes, the functions and operators for the first-

25order objects. There are, however, situations in which this division is

26unnatural. When one wants, for whatever purpose, to mix the first-order

27and second-order universes, one is reminded of the reason for their

28original separation: the paradoxes.

29This paper is a study in type-free logic. The goal of type-free logic is

30to find consistent, natural, and flexible ways to handle type-free systems

31where the second-order objects are not separated from the first-order

32objects, but are in some sense part of the first-order universe. In type-free

33logic one desires enough flexibility to including meaningful self-

34application and self-containment: functions and properties should be

35able to apply to themselves and collections should be able to contain

36themselves. One also wants natural or Fnaı̈ve_ comprehension and func-

37tional abstraction principles to create collections and functions. One

38might also want a truth predicate.

Journal of Philosophical Logic (2006)

DOI: 10.1007/s10992-005-9024-5

Springer 2006

39Standard ZFC set theory fails these desiderata. Functions may be

40applied to functions, and collections may contain collections, but within

41limits: a function cannot be a member of its domain and a collection

42cannot contain itself. In ZFC only a well-behaved, well-founded part of

43the second-order universe is allowed inside the first-order universe. In

44fact, due to well-foundedness, the set-theoretic universe can be regarded

45as a typed theory where the universe is typed by ordinal rank.

46Meaningful self-application is blocked: the relation x 2 y is automati-

47cally false unless x has a lower ordinal rank than y. ZFC does not allow a

48universal set (and even extensions of ZFC such as GB or MK class

49theory do not allow a universal class that contains the universal class). A

50typical example of the limitations of ZFC in this regard concerns the

51status of the self-composition function T: given a function f with domain

52and codomain the same class, define Tf to be f � f . This natural function

53is not an object in the ZFC universe.1 Now there is nothing preventing

54one from studying T in set theory, but the point is that it is external to the

55set-theoretical universe V, a universe intended to be rich enough for all

56of mathematics. This example is not atypical. Set theorists work outside

57of V whenever properties about the intersection \ or union [operators

58are discussed: the set-theoretical operators \ or [are not themselves

59objects of the set theoretical universe V.

60Whenever a type-free system is considered with more expressive

61power than ZFC set theory, for example a system with unrestricted

62comprehension, the threat of paradox emerges anew. So some part or

63another of traditional logic must be restricted. Nevertheless, there is

64significant interest in type-free systems due to applications in property

65theory, natural language semantics, the theory of truth, theoretical

66computer science, the theory of classes, and category theory. In property

67theory, it is desirable, indeed arguably essential, that every open formula

68in a language should determine an associated object called a property. In

69natural language semantics there should be a truth predicate that behaves

70in a manner similar to the truth predicate in natural language. In class

71theory there should be nothing preventing a class from containing itself.

72In fact, any restriction on class comprehension seems artificial.2 There

73should be a universal class, and this class should contain itself. And

74given its role as an organizing principle of contemporary mathematics,

75there should to be a more satisfying way to develop category theory than

76by employing the current large/small category distinction.

77There are a variety of proposed type-free systems3 which are provably

78free from contradictions engendered by paradoxes, and which restrict the

79traditional logics in one way or another. What remains is the question of

WAYNE AITKEN AND JEFFREY A. BARRETT

80which type-free systems are the most compelling. One obvious criterion

81is that a type-free system should not introduce artificialities worse that

82the artificiality of separating first-order objects from second-order

83objects.

84In this paper we introduce a promising methodology for developing

85a natural type-free system. The common strategy is to start with some

86form of a classical logic with a naı̈ve comprehension principle, then to

87weaken it until it is consistent. But it is unclear what to weaken. Our

88strategy, on the other hand, is to begin with a naturally occurring type-

89free system, then to investigate the logical properties it in fact possesses.

90The hope is that this naturally occurring type-free system will serve as a

91fruitful model for type-free systems more generally.

92Perhaps the most natural type-free system is ordinary language, but

93for our purpose this system is hopelessly intractable. The universe of

94recursive algorithms, however, is both natural and tractable. If we fix a

95framework for algorithmic description, then self-application of algo-

96rithms is possible, indeed commonplace. If we focus on logical operators

97that can be defined algorithmically, a rich type-free logical structure

98emerges. Algorithmic logic is the study of this type-free system.

99This paper is the second of a series designed to introduce and examine

100algorithmic logic. The first [1], a short and informal introduction to the

101subject, focussed on the challenge of the Curry paradox. The Curry

102paradox is the first test of any type-free system containing implication.

103The present paper builds on the lessons learned from the first, but is

104independent of it. It begins the formalization and careful study of

105algorithmic logic. The main task here is to understand which traditional

106rules of propositional logic are safe and which are problematic in

107algorithmic logic. A third paper [2] will discuss the principle of un-

108restricted functional abstraction in algorithmic logic. Fredrick Fitch [7]

109sought a type-free logic with an unrestricted abstraction principle;

110he regarded any restriction on abstraction as artificial and undesirable.

111Since algorithmic logic is both type-free and allows for a strong ab-

112straction principle, our work can be viewed as part of the Fitch-Curry-

113Myhill tradition.4

1142. ALGORITHMIC LOGIC

115The basic objects of algorithmic logic are algorithmic statements. An

116algorithmic statement is an assertion of the form algorithm � with input

117u halts with output v. The assertion 4! ¼ 24 can be understood as a true

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

118algorithmic statement, where the algorithm is one designed to calculate

119the factorial function, the input is 4, and the output is 24.

120Algorithmic statements can be more subtle.5 Consider Goldbach’s

121conjecture that every even number greater than two is the sum of two

122prime numbers. The negation of Goldbach’s conjecture can be under-

123stood as the algorithmic statement that GOLDBACH halts with output 0

124when run with input 0, where GOLDBACH is the algorithm that checks

125each even number in turn, beginning with four, and outputs 0 if it ever

126finds a number that cannot be represented as the sum of two primes. Note

127that if Goldbach’s conjecture is true, then the algorithm GOLDBACH will

128simply fail to halt regardless of input.

129An algorithmic statement can be false in two ways. It can be false

130because the algorithm halts with an output different from the one

131specified. Such statements are directly false. Or it can be false because

132the algorithm fails to halt. Such statements are indirectly false.

133The assertion that a specified algorithm halts on a specified input can

134also be understood as an algorithmic statement. Consider the algorithm

135HALT that takes as input a pair ½�; u� and runs as a subprocess the

136algorithm � with input u. The algorithm HALT outputs 1 if the subprocess

137halts; otherwise HALT itself does not halt. So the algorithmic statement

138asserting that HALT outputs 1 on input ½�; u� is true if and only if � halts

139on input u.

140The algorithm HALT is an example of an algorithmic predicate, a

141predicate that can be represented by an algorithm that outputs 1 if and

142only if the predicate is true of the input. We require that if an algorithmic

143predicate halts at all, it outputs 0 or 1. Algorithmic predicates are the

144basic internal predicates of algorithmic logic.

145There is an internal truth predicate TRUE for algorithmic statements.

146The algorithm TRUE expects as input a triple ½�; u; v� representing an

147algorithmic statement with specified algorithm �, specified input u, and

148specified output v. First TRUE runs the subprocess � with input u. If this

149subprocess halts with output v, then TRUE outputs 1. If the subprocess

150halts with output not equal to v, then TRUE outputs 0. If the subprocess

151fails to halt, then TRUE also fails to halt.

152Closely related to the truth predicate, is an algorithmic predicate

153corresponding to directly false. Because of the halting problem, however,

154there is no algorithmic predicate corresponding to false: the external

155property of being false is one that cannot be expressed internally.

156Finally, algorithmic connectives can be defined in terms of algorith-

157mic predicates. The algorithmic conjunction ^ and disjunction _ behave

158as expected, but the algorithmic conditional
�) requires special care.

WAYNE AITKEN AND JEFFREY A. BARRETT

159Here the conditional is indexed by a library � of inference rules. The

160algorithmic statement A
�)B means that the algorithmic statement B can

161be deduced from the algorithmic statement A using the rules in the

162library �. Because of its definition, the connective
�) can be used to

163define an internal predicate PROVE�. The connective
�) is also used to

164define negation :� .

165Since algorithms can take algorithms as input, as in the case of

166HALT above, algorithmic logic is inherently self-referential and so is

167essentially type-free. Consequently, special care must be taken to avoid

168contradiction: the rules of the library � must be carefully evaluated for

169validity. Indeed, in an earlier paper [1] we show that the rule modus

170ponens for
�) cannot be included in a sufficiently rich library � without

171rendering the rule itself invalid. If modus ponens is included in such a

172library, an algorithmic version of the Curry paradox results in a

173contradiction.

174The first part of the present paper introduces rules for algorithmic

175logic that form a stable base: a valid collection of rules that can be safely

176extended to form stronger valid collections. The second part of the paper

177presents a list of paradoxical rules: traditional rules of logic that can be

178shown to be invalid when in a sufficiently rich library, usually through

179arguments akin to those found in the Russell and Curry paradoxes.

1803. CONVENTIONS FOR ALGORITHMS

181Rather than stipulate a particular theoretical framework for the

182discussion of algorithms, we require that a suitable framework behaves

183as follows.

184Anything that can be input into an algorithm is called a datum. Data

185include natural numbers and algorithms. In addition, if a1 . . . ak are data,

186the list ½a1; . . . ; ak� is itself a datum. Every algorithm accepts exactly one

187input datum and either does not halt or halts with exactly one output

188datum. If an algorithm requires or produces multiple data, the data are

189packaged in a single input or output list respectively. Any datum is an

190allowable input whether or not it is consistent with the intended function

191of the algorithm. Typically, we will not specify what an algorithm does

192with an unexpected input datum.

193Every datum has a positive integer size, and there are only a finite

194number of data of a given size. The size of a list is strictly greater than

195the sum of the sizes of the items of the list. A process is a pair consisting

196of an algorithm and an input. Every halting process has a positive integer

197runtime. If a parent process runs one or more subprocesses in its exe-

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

198cution, then the runtime of the parent process is strictly greater than the

199sum of the runtimes of the halting subprocesses.

200An algorithmic statement can be represented as a datum: If � is the

201specifed algorithm, u the specified input, and v the specified output, then

202the list ½�; u; v� represents the corresponding algorithmic statement.

203The identity algorithm IDENTITY simply outputs a copy of its input.

204The algorithmic statement ½IDENTITY; 0; 0� is denoted T . This algorithmic

205statement is true. Similarly, the algorithmic statement ½IDENTITY; 0; 1� is

206denoted F . This statement is directly false since 0 6¼ 1.

2074. DEDUCTION

208There is an algorithmic predicate for deduction. This deduction predicate

209depends on a library of rules instantiated by an algorithmic sequence.

210DEFINITION 4.1. An algorithmic sequence is an algorithm which halts

211for every positive integer input. If � is an algorithmic sequence, then �n

212denotes the output of � applied to the integer n.
213

214Informally, a rule is an algorithm which expects as input a list of

215algorithmic statements which it treats as hypotheses. It seeks to generate

216statements which are logically entailed by these hypotheses. It outputs a

217list consisting of the input list together with the newly generated

218statements, if any. Some rules will require a resource integer m in order

219to limit the amount of time that the rule uses. Resource integers are

220important in order to allow different rules to take turns being applied by

221a supervising process. Finally, some rules depend on the choice of a

222library �, so in general a library (or at least an algorithmic sequence

223which the rule treats as a library) must be included in the input.

224DEFINITION 4.2. A rule is an algorithm � which expects an input of

225the form ½H ; �;m� where H is a list of algorithmic statements, � is an

226algorithmic sequence, and m is a positive integer. For any such input, �
227is required to halt with output consisting of a list of algorithmic

228statements containing H as an initial sublist. Call H the hypothesis list, �
229the nominal library, and m the resource integer. The output of the rule �
230is the conclusion list.

231For convenience, we require a monotonicity property: If m0 � m and if

232every item of H is also an item of H 0, then every item of the conclusion

233list for input ½H ; �;m� is also an item of the conclusion list for input

234½H 0; �;m0�.

WAYNE AITKEN AND JEFFREY A. BARRETT

235DEFINITION 4.3. A library is an algorithmic sequence � such that �n is

236a rule for all positive integers n.
237

238As defined, a library is an infinite sequence of rules, but these rules

239are not necessarily distinct. In fact, any finite collection of data can be

240represented as an algorithmic sequence � by defining �n to be �N for all

241n � N where N is the size of the collection. Thus the definition does not

242exclude finite libraries.

243DEFINITION 4.4. A rule is �-valid for a library � if, for all hypothesis

244lists H consisting of only true statements and for all resource integers m,

245the conclusion list for input ½H ; �;m� consists only of true statements. A

246library � is valid if it contains only �-valid rules.

247DEFINITION 4.5. Let A1; . . . ;An and B be algorithmic statements. Let

248�k be the kth rule of a library �. The statement B is a direct �k-

249consequence of A1; . . . ;An if there is a hypothesis list H and a resource

250integer m such that ðiÞ every item of H is in fA1; . . . ;Ang and ðiiÞ B is an

251item of the conclusion list obtained by running �k with input ½H ; �;m�.6

252DEFINITION 4.6. A set of algorithmic statements S is �-deductively

253closed if, for all k, every direct �k-consequence of elements in S is itself

254in S.

255LEMMA 4.7. If � is a valid library then the set S of true algorithmic

256statements is �-deductively closed.

257LEMMA 4.8. The intersection of �-deductive closed sets is �-deduc-

258tively closed.

259DEFINITION 4.9. Let S be a set of algorithmic statements. The �-

260deductive closure S of S is the intersection of all �-deductively closed

261sets containing S.

262LEMMA 4.10. The �-deductive closure S of a set of algorithmic

263statements is the minimal �-deductively closed set containing S. Thus

264S ¼ S.
265

266The �-deductive closure of a finite set fA1; . . . ;Ang of algorithmic

267statements can be explicitly constructed as follows. Let f : Nþ !
268Nþ � Nþ be a recursive bijection. Define H0 ¼ ½A1; . . . ;An�. For i > 0,

269define Hi to be the conclusion list obtained by running �k on ½Hi�1; �;m�
270where f ðiÞ ¼ ðk;mÞ.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

271LEMMA 4.11. B is in the �-deductive closure of fA1; . . . ;Ang if and

272only if B is an item of Hi for some i.

273Proof. Let S be the set of statements on H0;H1; The strategy is to

274show ðiÞ the set of items of any particular Hi is in the �-deductive closure

275(so S is a subset of the �-deductive closure), and ðiiÞ S is �-deductively

276closed.

277(i) By induction on i. The case i ¼ 0 is clear. Assume that every item

278of Hi�1 is in the �-deductive closure. If B is an item of Hi, and if

279f ðiÞ ¼ ðk;mÞ, then B is a direct �k-consequence of the items of

280Hi�1. So B is in the �-deductive closure.

281(ii) Suppose B is a direct �k-consequence of C1; . . . ;Cr 2 S. We must

282show that B 2 S. By definition, B is on the conclusion list obtained

283by running �k with input ½H ; �;m� for some integer m and some list

284H where every item of H is in the set fC1; . . . ;Crg. By the

285mononicity requirement for rules, if H 0 is any list whose items

286include each C1; . . . ;Cr and if m0 � m then B is on the conclusion

287list when �k is run with input ½H 0; �;m0�. 288

289Let i0 be an integer such that C1; . . . ;Cr are all on Hi0 . There are an

290infinite number of pairs ðk;m0Þ with m0 � m, and all but a finite

291number are of the form f ðiÞ for i > i0. Choose such an i. So B is on

292the conclusion list when �k is run with the input ½Hi�1; �;m
0�. That

293is, B is on Hi. Thus B 2 S. 294Ì

295DEFINITION 4.12. The algorithm DEDUCE expects an input of the form

296½�; �;B� where � is a list of algorithmic statements, � is a library, and B

297is an algorithmic statement. It computes H0;H1; . . ., where H0 ¼ � and

298Hi is defined as above. After computing Hk , DEDUCE checks to see if B is

299on Hk . If so, DEDUCE outputs 1; otherwise, it calculates Hkþ1.

300DEFINITION 4.13. Let B be an algorithmic statement and � a list of

301algorithmic statements. The algorithmic statement
�

DEDUCE; ½�; �;B�; 1
�

302is denoted as �‘� B (usually � is a library, but the definition applies to

303any datum �). If � is the list ½A1; . . . ;An� one may write A1; . . . ;An ‘� B

304instead. Likewise, �;C1; . . . ;Ck ‘� B denotes �0 ‘� B where �0 is the list

305obtained by appending C1; . . . ;Ck to the list �.

306PROPOSITION 4.14. Suppose � ¼ ½A1; . . . ;An� where A1; . . . ;An are

307algorithmic statements, and suppose � is a library. Then �‘� B if and

308only if B is in the �-deductive closure of fA1; . . . ;Ang.
309Proof. This follows from Lemma 4.11 and the definition of DEDUCE.

311Ì

WAYNE AITKEN AND JEFFREY A. BARRETT

313In particular, if �‘� B then any �-deductively closed set containing all

314the items of � contains B.

315COROLLARY 4.15. Let A and B be algorithmic statements, � and �0

316lists of algorithmic statements, and � a library.

317(i) If every item of � is on �0 and if �‘� A then �0 ‘� A.

318(ii) A‘� A.

319(iii) If �‘� A and �;A‘� B then �‘� B.

320(iv) If �‘� A and if �0 ‘� Ci for all items Ci of �, then �0 ‘� A.

322Proof. ðiÞ If S1 � S2 then S1 � S2. ðiiÞ S � S. ðiiiÞ Let S be the �-

323deductive closure of the items of �. So A 2 S. Since �;A‘� B and S is �-

324deductively closed, B 2 S. ðivÞ Let S be the �-deductive closure of the

325items of �0. So every item Ci of � is in S. Since �‘� A and since S is

326deductively closed, S must contain A. Ì

328PROPOSITION 4.16 (Soundness). Suppose every statement on the list

329� is true, � is a valid library, and �‘� B. Then B is true.
330Proof. The set of true statements S is �-deductively closed by Lemma

4.7. The result follows from Proposition 4.14. 332Ì
333

334Because DEDUCE is an internal predicate representing deduction, one

335can use ‘� to define a conditional connective
�). (A material conditional

336!, not dependent on DEDUCE, will be defined in Section 12). The

337algorithm DEDUCE can also be used to define an internal provability

338predicate PROVE�.

339DEFINITION 4.17. Let A
�)B denote A‘� B. Let PROVE�ðAÞ denote

340T �)A.
341

342The above results, restated in this notation, yield the following.

343PROPOSITION 4.18. Let A;B, and C be algorithmic statements, and �
344a library. Then

345(i) A
�)A, and

346(ii) if A
�)B and B

�)C then A
�)C.

348Moreover, if � is a valid library, then

349(iii) if A
�)B and A are true, then so is B, and

350(iv) if PROVE�ðAÞ is true, then so is A.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

3525. TRANSITIVITY RULE

353In the next several sections 11 inference rules will be introduced. These

354rules will be used to form a stable base (in the sense of Definition 13.1).

355The first is an internal implementation of Proposition 4.18ðiiÞ.

356RULE 1. The Transitivity Rule is an algorithm that implements the rule

357diagram

A
�
) B

B
�
) C

A
�
) C:

360In other words, assuming the input is of the expected form ½H ; �;m�, the

361Transitivity Rule first copies the hypothesis list H to a working list �.

362Then it looks for a statement of the form A
�)B and a statement of the

363form B
�)C on the hypothesis list H where A;B;C are algorithmic

364statements. For all such pairs that it finds, the Transitivity Rule appends

365the statement A
�)C to the working list �. After processing all such

366pairs, it outputs the resulting list � as its conclusion list.

367PROPOSITION 5.1. The Transitivity Rule is �-valid for all libraries �.

368Proof. The �-validity of this rule follows from Proposition 4.18ðiiÞ.
370Ì

3716. UNIVERSAL RULES

372RULE 2. The Universal Rule is an algorithm that generates all true

373algorithmic statements. More specifically, assuming the input is of the

374expected form ½H ; �;m�, the Universal Rule outputs a list consisting of H

375appended with all m-true algorithmic statements. An algorithmic

376statement B is m-true if ðiÞ the datum B has size at most m, ðiiÞ the

377runtime of the associated process is at most m, and ðiiiÞ B is true.

378PROPOSITION 6.1. The Universal Rule is �-valid for all libraries �.

379Proof. The Universal Rule only appends true statements to the input

list. 381Ì

382PROPOSITION 6.2. Suppose the library � contains the Universal Rule.

383Let � be a list of algorithmic statements, and A and B be algorithmic

WAYNE AITKEN AND JEFFREY A. BARRETT

384statements. If B is true then �‘� B. In particular, if B is true, then so is

385A
�)B and PROVE�ðBÞ.

386Proof. Every true algorithmic statement is m-true for some m. So the

387�-deductive closure of any set contains all true statements. Ì

389COROLLARY 6.3. If the library � is valid and contains the Universal

390Rule, then an algorithmic statement A is true if and only if PROVE�ðAÞ.
391Proof. This follows from Proposition 4.18ðivÞ and Proposition 6.2.

393Ì

395So, in algorithmic logic, there is a sense in which internal deduction

396is complete for any valid library containing the Universal Rule. By

397Proposition 13.7, however, there is also a sense in which algorithmic

398logic is inherently incomplete.

399RULE 3. The Meta-Universal Rule is an algorithm that implements the

400rule diagram

B

A
�
)B:

403More specifically, assuming an input of the expected form ½H ; �;m�, the

404Meta-Universal Rule appends to H all statements of the form A
�)B

405where ðiÞ B is on H and ðiiÞ the size of the datum A
�)B is at most m.

406

407The Meta-Universal Rule is the first rule whose validity is contingent

408on the contents of the library.

409PROPOSITION 6.4. If the library � contains the Universal Rule, then

410the Meta-Universal Rule is �-valid.

Proof. This follows from Proposition 6.2. 412Ì

413PROPOSITION 6.5. If the library � contains the Transitivity Rule and

414the Meta-Universal Rule, then

415(i) A;A
�)C ‘� B

�)C, and

416(ii) A;A
�)C ‘� PROVE�ðCÞ:

418Proof.

419(i) Let S be the �-deductive closure of (the set consisting of) A and

420A
�)C. By the Meta-Universal Rule, B

�)A is in S. By the

421Transitivity Rule, B
�)C is in S.

422(ii) This is a special case of PartðiÞ where B is T . Ì

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

4257. CONJUNCTION

426DEFINITION 7.1. The algorithm AND expects as input a list ½A;B�
427where A and B are algorithmic statements. If A and B are true, then AND

428outputs 1. If either is directly false, then AND outputs 0. Otherwise, AND

429does not halt. If A and B are algorithmic statements, then
�

AND; ½A;B�; 1
�

430is denoted by A ^ B.

431If � ¼ ½C1; . . . ;Ck� is a list of algorithmic statements, then the

432conjunction C1 ^ . . . ^ Ck of � is defined to be ðC1 ^ . . . ^ Ck�1Þ ^ Ck . If

433k ¼ 1 then the conjunction is simply defined to be C1, and if k ¼ 0 (so �
434is the empty list) then the conjunction is defined to be T . Observe that

435the conjunction C1 ^ � � � ^ Ck is true if and only if each Ci is true.

436Similarly, the conjunction is directly false if and only if some Ci is

437directly false.

438RULE 4. The Conjunction Rule is an algorithm that simultaneously

439implements the following three rule diagrams:

A

B A ^ B A ^ B

A ^ B A B :

442More specifically, for any statements A and B on H, the Conjunction

443Rule appends A ^ B to H. In addition, for any statement A ^ B on the

444given H, the Conjunction Rule appends A and B to H.

445PROPOSITION 7.2. The Conjunction Rule is �-valid for all libraries �.

446PROPOSITION 7.3. Let S be a �-deductively closed set of algorithmic

447statements where � is a library containing the Conjunction Rule. Let

448A1; . . . ;Ak be algorithmic statements where k � 1. The conjunction

449A1 ^ � � � ^ Ak is in S if and only if each Ai is in S. (If k ¼ 0 assume that �
450contains the Universal Rule instead of the Conjunction Rule).

451COROLLARY 7.4. Let � be a library containing the Conjunction Rule.

452The logical connective ^ satisfies both the symmetry and associativity

453laws:

454(i) A ^ B ‘� B ^ A:
455(ii) ðA ^ BÞ ^ C ‘� A ^ ðB ^ CÞ and A ^ ðB ^ CÞ ‘� ðA ^ BÞ ^ C:

457COROLLARY 7.5. Let � ¼ ½C1; . . . ;Ck� be a list of algorithmic state-

458ments, A1; . . . ;An;B be algorithmic statements, and C ¼ C1 ^ � � � ^ Ck.

WAYNE AITKEN AND JEFFREY A. BARRETT

459Assume that � contains the Conjunction Rule and the Universal Rule

460(for the case k ¼ 0 or n ¼ 0). Then

461(i) � ‘� A1 ^ � � � ^ An if and only if � ‘� Ai for each Ai, and

462(ii) �‘� B if and only if C
�)B.

464RULE 5. The Meta-Conjunction Rule is an algorithm that implements

465the rule diagram

A
�)B

A
�)C

A
�)ðB ^ CÞ:

468PROPOSITION 7.6. The Meta-Conjunction Rule is �-valid for all

469libraries � containing the Conjunction Rule.

470Proof. Assume A
�)B and A

�)C. Let S be the �-deductive closure of

471A. By assumption B and C are in S. By the Conjunction Rule B ^ C is

472also in S. Therefore, A
�)B ^ C. Ì

474

475Several laws can be deduced from the above rules.

476PROPOSITION 7.7. If � contains all the above rules, then

477(i) A
�)B ‘� A

�)B ^ A;
478(ii) A

�)B; B ^ A
�)C ‘� A

�)C, and

479(iii) A
�)B ‘� C ^ A

�)C ^ B; A
�)B ‘� A ^ C

�)B ^ C:

481Proof.

482(i) Let S be the �-deductive closure of A
�)B. The statement A

�)A is

483true by Proposition 4.18ðiÞ. By the Universal Rule, A
�)A is in S.

484So by the Meta-Conjunction Rule A
�)B ^ A is in S.

485(ii) Let S be the �-deductive closure of A
�)B and B ^ A

�)C. By the

486first part, A
�)B ^ A is in S. So, by the Transitivity Rule, A

�)C is

487in S.

488(iii) This follows by a similar argument. Ì

491PROPOSITION 7.8. Suppose � contains all the above rules. If

492B ^ A
�)C then B

�)ðA �)CÞ:
493Proof. Let S be the �-deductive closure of B. By supposition

494B ^ A
�)C holds, so is in S by the Universal Rule. By the Meta-

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

495Universal Rule, A
�)B is in S. Finally, by Proposition 7.7ðiiÞ, A

�)C is

in S. 497Ì

498THEOREM 7.9 Suppose � contains all the above rules. Let � be a list

499of algorithmic statements, and let A and C be algorithmic statements. If

500�;A ‘� C then � ‘� A
�)C:

501Proof. Let � ¼ ½B1; . . . ;Bk� and B ¼ B1 ^ � � � ^ Bk . If �;A‘� C, then

502B ^ A
�)C by Corollary 7.5ðiiÞ. By Proposition 7.8, B

�)ðA �)CÞ holds.

By Corollary 7.5ðiiÞ again, �‘� A
�)C. 504Ì

505COROLLARY 7.10 If � contains all the above rules, then

506(i) A ‘� B
�)A ^ B,

507(ii) A
�)B ‘� ðB �)CÞ �)ðA �)CÞ,

508(iii) A
�)B ‘� ðC �)AÞ �)ðC �)BÞ, and

509(iv) B ^ A
�)C ‘� B

�)ðA �)CÞ.
511Proof.

512(i) By the Conjunction Rule, A;B ‘� A ^ B. Now use Theorem 7.9.

513(ii) By the Transitivity Rule, A
�)B;B

�)C ‘� A
�)C. Now use Theo-

514rem 7.9. PartðiiiÞ is similar.

515(iii) Let S be the �-deductive closure of B ^ A
�)C and B. By the Meta-

516Universal Rule, A
�)B is in S. By Proposition 7.7ðiiÞ, A

�)C is in

517S. Thus B ^ A
�)B ‘� A

�)C. Now use Theorem 7.9. Ì

5218. BICONDITIONAL

522DEFINITION 8.1. Let A
�() B denote ðA �)BÞ ^ ðB �)AÞ.

523PROPOSITION 8.2. The following laws hold for any library �:

524(i) A
�() A,

525(ii) If A
�() B then B

�() A, and

526(iii) If A
�() B and B

�() C, then A
�() C.

528Some results concerning conjunction can be conveniently expressed

530with the biconditional.

531PROPOSITION 8.3. Suppose � is a library containing the Conjunction

532and Universal Rules. Then

533(i) A
�() A ^ A,

534(ii) A
�() A ^ T ,

WAYNE AITKEN AND JEFFREY A. BARRETT

535(iii) A ^ B
�() B ^ A, and

536(iv) A ^ ðB ^ CÞ �() ðA ^ BÞ ^ C.

5399. DISJUNCTION

540DEFINITION 9.1. The algorithm OR expects as input a list ½A;B� where

541A and B are algorithmic statements. If either A or B are true, then OR

542outputs 1. If both are directly false, then OR outputs 0. Otherwise, OR

543does not halt.

544If A and B are algorithmic statements, then we denote
�

OR; ½A;B�; 1
�

545by A _ B. The statement A _ B is true if and only if either A is true or B

546is true. Similarly, A _ B is directly false if and only if both A and B are

547directly false.

548RULE 6. The Disjunction Introduction Rule is an algorithm that si-

549multaneously implements the following two rule diagrams:

A B
A _ B A _ B:

552More specifically, assuming an input in the expected form ½H ; �;m�,
553the Disjunction Introduction Rule appends to H all statements of the

554form A _ B where (i) either A or B is on H and (ii) the size of A_B is at

555most m.

556PROPOSITION 9.2. The Disjunction Introduction Rule is �-valid for all

557libraries �.
558

559At this point one might expect an algorithmic disjunction elimination

560rule allowing the deduction of C from A
�)C; B

�)C, and A _ B. The

561difficulties of such a rule will be discussed in Section 14. An

562unproblematic but weaker version of this rule can be produced by

563requiring a sort of verification for the hypotheses A
�)C and B

�)C. The

564following rule implements this idea.7

565RULE 7. The Disjunction Elimination Rule is an algorithm, denoted

566D-ELIM, that implements the rule diagram

G ^ A
�)C *

G ^ B
�)C *

G

A _ B

C

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

569where * indicates that the corresponding statement must be verified.

570More specifically, assuming an input of the expected form ½H ; �;m�,
571whenever D-ELIM finds four statements on H of the form of the premises

572of the rule diagram, it determines if the runtimes of the processes

573associated with the first two statements in the diagram are less than m. If

574the runtimes are both less than m and if both statement are true, then

575D-ELIM appends the statement represented by C to the conclusion list.
576

577Proposition 4.18(iii) and the algorithmic definition of _ gives validity:

578PROPOSITION 9.3. The Disjunction Elimination Rule is �-valid for all

579valid libraries �.

581This is the first rule we have considered where the validity of the rule

582is contingent on the validity of the library. If the library � is valid, then

583this rule is �-valid, but in Section 14 we shall see several examples of

584valid rules that cannot themselves be contained in a stable base (in the

585sense of Definition 13.1). Since the goal is to form a stable base of

586inference rules, we need something stronger than the above proposition.

587Theorem 9.5 is sufficient.

588LEMMA 9.4. If a library � is not valid, but contains the Conjunction

589Rule, then there are algorithmic statements A and B such that A and

590A
�)B are true, but B is false.

591Proof. Since � is not valid, there is a rule �k in � which is not �-valid.

592In other words, there is a list H of true statements and an integer m such

593that when the list ½H ; �;m� is given as input to �k , the rule generates an

594output list containing at least one false statement B. Let H ¼ ½A1; . . . ;An�
595and let A ¼ A1 ^ � � � ^ An. Note that A is true. Let S be the �-deductive

596closure of A. Since � contains the Conjunction Rule, each Ai is in S. So B

is in S by the definition of the deductive closure. Thus A
�)B is true. 598Ì

599THEOREM 9.5. Let � be a library that contains at least the

600Conjunction Rule and the Disjunction Elimination Rule. Suppose that

601every rule in � other than the Disjunction Elimination Rule is �-valid.

602Then � is valid.

603Proof. Suppose to the contrary that � is not valid. By the previous

604lemma there are statements D and E such that D is true, D
�)E is true,

605but E is false. Choose D and E so that the runtime r of the process

606associated with D
�)E is minimal.

607Let H0 ¼ ½D�. Since D
�)E, when ½H0; �;E� is input to DEDUCE the

608output is 1. Recall that DEDUCE generates a monotonic sequence

609H0;H1; . . . of lists, and since it outputs 1, it eventually generates a list

WAYNE AITKEN AND JEFFREY A. BARRETT

610Hk containing E. Thus, since H0 contains only true statements but E is

611false, there is a unique i � 1 such that Hi�1 contains only true statements

612and Hi contains at least one false statement C. Let the function f be as in

613the definition of DEDUCE, and let f ðiÞ ¼ ðk;mÞ. Thus Hi is obtained by

614running �k with input ½Hi�1; �;m�. Note that �k cannot be �-valid, so �k

615must be D-ELIM (since we assumed that all other rules are �-valid). Since

616D-ELIM generates C, Hi�1 must contain statements of the form

617ðiÞ G ^ A
�)C; ðiiÞ G ^ B

�)C; ðiiiÞ G, and ðivÞ A _ B. These four state-

618ments are true since they are on Hi�1. So either A or B is true, and it is

619enough to consider the case where A is true. In this case G ^ A is true.

620Since D-ELIM generates the statement C, it must first run the process

621associated with G ^ A
�)C and determine that the statement is true. The

622runtime r of the global process associated with D
�)E must be strictly

623larger than the runtime r0 associated with G ^ A
�)C (since r0 is the

624runtime a subprocess of a subprocess of the global process associated

625with D
�)E). Since r0 G r and since both G ^ A and G ^ A

�)C are true,

it follows from the definition of r that C must be true, a contradiction. 627Ì

628PROPOSITION 9.6. Let � be a library containing the Universal,

629Conjunction, and Disjunction Elimination Rules.

630(i) If G ^ A
�)C and G ^ B

�)C then G ^ ðA _ BÞ �)C.

631(ii) If �;A ‘� C and �;B ‘� C, then �;A _ B ‘� C.

634Proof.

635(i) Let S be the �-deductive closure of G ^ ðA _ BÞ. We must show

636that C is in S. By the Conjunction Rule, G and A _ B are in S. By

637the Universal Rule, G ^ A
�)C and G ^ B

�)C are also in S. So by

638the Disjunction Elimination Rule, C is in S (where D-ELIM needs a

639resource number m larger than the runtimes associated with

640G ^ A
�)C and G ^ B

�)C).

(ii) This follows from PartðiÞ and Corollary 7.5ðiiÞ. 642Ì

645PROPOSITION 9.7. If � contains all the above rules, then

646(i) A _ T �() T ,

647(ii) A
�() A _ A,

648(iii) A _ B
�() B _ A, and

649(iv) A
�() A ^ ðA _ BÞ.

650(v) A
�() A _ ðA ^ BÞ.

651(vi) A _ ðB _ CÞ �() ðA _ BÞ _ C.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

653Proof.

654(i) to (v) These are similar to and easier than Part (vi).

655(vi) The Disjunction Introduction Rule (twice) gives B‘� ðA _ BÞ _ C. 656

657Likewise, C ‘� ðA _ BÞ _ C. Proposition 9.6ðiiÞ gives B _ C ‘�
658ðA _ BÞ _C. The Disjunction Introduction Rule (twice) gives

659A‘� ðA _ BÞ _ C. Finally, Proposition 9.6ðiiÞ gives A _ ðB _ CÞ ‘�
660ðA _ BÞ _ C. This gives one direction. The other direction follows

from a similar argument. 662Ì

663PROPOSITION 9.8. If � contains all the above rules, then

664(i) A ^ ðB _ CÞ �() ðA ^ BÞ _ ðA ^ CÞ, and

665(ii) A _ ðB ^ CÞ �() ðA _ BÞ ^ ðA _ CÞ. 666

667
668Proof.

669(i) By the Disjunction Introduction Rule, A ^ B ‘� ðA ^ BÞ _ ðA ^ CÞ
670and A^C ‘� ðA^BÞ_ðA^CÞ. Now use Proposition 9.6ðiÞ to show

671A^ ðB_CÞ ‘� ðA^BÞ_ðA^CÞ. The other direction is similar.

672(ii) Showing A _ ðB ^ CÞ ‘� ðA _ BÞ ^ ðA _ CÞ is similar to PartðiÞ. For

673the other direction, first show C;A‘� A _ ðB ^ CÞ and C;B‘� A_
674ðB ^ CÞ using the Disjunction Introduction and Conjunction Rules.

675Use Proposition 9.6ðiiÞ to get C;A _ B ‘� A _ ðB ^ CÞ. In other

676words, A _ B;C ‘� A _ ðB ^ CÞ. Use the Disjunction Introduction

677Rule to get A _ B;A ‘� A _ ðB ^ CÞ. Use Proposition 9.6ðiiÞ again

to get A _ B;A _ C ‘� A _ ðB ^ CÞ. Finally, use Proposition 7.5ðiiÞ
to get the conclusion.

680

682Ì

683RULE 8. The Meta-Disjunction Rule is an algorithm that implements

684the rule diagram

G ^ A
�)C

G ^ B
�)C

G ^ ðA _ BÞ �)C:

687PROPOSITION 9.9. If the library � contains the Universal, Conjunc-

688tion, and Disjunction Elimination Rules, then the Meta-Disjunction Rule

689is �-valid.

Proof. This follows from Proposition 9.6ðiÞ. 691Ì

WAYNE AITKEN AND JEFFREY A. BARRETT

692PROPOSITION 9.10. If � contains all the above rules, then

A
�
)C;B

�
)C ‘� A _ B

�)C:
693

695Proof. Let S be the �-deductive closure of the two hypotheses. By

696the Conjunction, Universal, and Transitivity Rules, T ^ A
�)C and T ^

697B
�)C are in S. By the Meta-Disjunction Rule, T ^ ðA _ BÞ �)C is in S.

698By the Universal Rule, T is in S. So, by Corollary 7.10ðiÞ, A _ B
�)

699T ^ ðA _ BÞ is in S. Finally, by the Transitivity Rule, A _ B
�) C is in S.

701Ì

702PROPOSITION 9.11. Assume that � contains all of the rules defined

703above. Then A
�)B ‘� C _ A

�)C _ B and A
�)B ‘� A_ C

�)B _ C.

704Proof. Let S be the deductive closure of A
�)B. By the Disjunction

705Introduction, Universal, and the Transitivity Rules, A
�)C _ B and

706C
�)C _ B are in S. By Proposition 9.10, C _ A

�)C _ B is in S. Sim-

ilarly, A _ C
�)B _ C is in S. 708Ì

70910. NEGATION

710DEFINITION 10.1. Let A be an algorithmic statement. The statement

711:� A is defined to be A
�)F .

712PROPOSITION 10.2. If � contains all of the above rules, then

713(i) A
�)B;

�:B ‘� �:A,

714(ii) A
�)B ‘� �:B

�) �:A, and

(iii) A; :� A ‘� �:B. 716

717Proof.

718(i) Use the Transitivity Rule.

719(ii) Use PartðiÞ and Theorem 7.9.

720(iii) Use the Meta-Universal Rule to form B
�)A. Then use PartðiÞ.

722Ì

727One might expect the law A;
�:A ‘� B to hold. Unfortunately it often

728fails. The instability of the corresponding rule will be discussed in

729Section 14.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

730PROPOSITION 10.3 (De Morgan). If � contains all of the above rules,

731then

732(i)
�:ðA _ BÞ �() �:A ^ �:B, and

(ii)
�:A _ �:B ‘�

�: ðA ^ BÞ. 734

735Proof.

736(i) Let S be the �-deductive closure of
�: ðA _ BÞ. In other words,

737A _ B
�)F is in S. Use the Disjunction Introduction Rule to get

738A
�)A _ B and the Universal Rule to show that it is in S. So, A

�)F
739is in S by the Transitivity Rule. In other words,

�:A is in S.

740Likewise,
�:B is in S. The Conjunction Rule gives that

�:A ^ �:B

741is in S. So
�: ðA _ BÞ ‘� �:A ^ �:B.

742For the other direction, let S be the deductive closure of
�:A^ �:B.

743By the Conjunction Rule A
�)F and B

�)F are in S. By Prop-

744osition 9.10, A _ B
�)F is in S. So

�:A ^ �:B ‘� �: ðA _ BÞ.
745(ii) Let S be the �-deductive closure of A

�)F . Use the Conjunction

746Rule to get A ^ B
�)A and the Universal Rule to show that it is in

747S. So, by the Transitivity Rule, A ^ B
�)F is in S.

748Therefore,
�:A ‘� �: ðA ^ BÞ. Similarly,

�:B ‘� �: ðA ^ BÞ. So, by

Proposition 9.6ðiiÞ, �: A _ �:B ‘� �: ðA ^ BÞ. 750Ì

752

753The problems with the full converse
�: ðA ^ BÞ �) �:A _ �:B of the

754second part of De Morgan will be addressed in Theorem 14.12. PartðiiÞ
755of the following gives a partial version.

756PROPOSITION 10.4. If � contains all the above rules, then

757(i)
�: ðA ^ BÞ; B ‘�

�:A, and

(ii)
�: ðA ^ BÞ; B _ �:B ‘�

�:A _ �:B. 759

760Proof.

761(i) Let S be the �-deductive closure of A ^ B
�)F and B. By Corollary

7627.10ðiÞ, A
�) B ^ A is in S. By Corollary 7.4ðiÞ, B ^ A

�) A ^ B

763holds so is in S by the Universal Rule. By applying the Transitivity

764Rule twice, A
�)F is in S.

765(ii) Both
�:ðA ^ BÞ; B ‘�

�:A _ �:B and
�: ðA ^ BÞ; �:B ‘� �:A_ �:B

766hold. The first follows by PartðiÞ and the Disjunction Introduction

767Rule. The second is a consequence of the Disjunction Introduction

Rule. So by Proposition 9.6ðiiÞ the conclusion holds. 769Ì

WAYNE AITKEN AND JEFFREY A. BARRETT

773One might expect the law A _ B;
�:B ‘� A to hold. Problems with this

774law will be discussed in Section 14. A partial version is given by the

775following.

776PROPOSITION 10.5. If � contains the above rules, then
�:A _ B;

�:B ‘�
�:A:

778

779Proof. Corollary 4.15 gives
�:B;

�:A ‘�
�:A. Proposition 10.2ðiiiÞ

780gives
�:B; B ‘�

�:A. Finally, Proposition 9.6ðiiÞ gives
�:B;

�:A_
B ‘� �:A. 782Ì

784The proofs of the propositions above are not contingent on any special

785properties of the statement F itself: similar results can be derived if
�:U

786is systematically replaced with U
�)E where E is any fixed statement.

787The following proposition, however, uses a property specific to F : if �
788contains the Elimination of Case Rule defined below, then F �)B holds

789for any B.

790PROPOSITION 10.6. Assume that F �)B holds for any B and that �
791contains all the above rules.

792(i) If
�:A then A

�)B.

793(ii)
�:A ‘� A

�)B.

794(iii) A;
�:A ‘� B

�)C.

795(iv) If
�:A then A _ B ‘� B.

796(iv)
�:A ‘� A _ B

�)B.

797(vi)
�:A _ B ‘� A

�)B.

799Proof.

800(i) By assumption, A
�)F and F �)B. So, the conclusion follows from

801Proposition 4.18ðiiÞ.
802(ii) Let S be the �-deductive closure of A

�)F . Since F �)B holds, it

803is in S by the Universal Rule. So, by the Transitivity Rule, A
�)B

804is in S.

805(iii) Let S be the �-deductive closure of A and
�:A. Use PartðiiÞ to get

806A
�)C in S. By the Meta-Universal Rule, B

�)A is in S. So, by the

807Transitivity Rule, B
�)C is in S.

808(iv) Assume
�:A. So by PartðiÞ, A‘� B. Since B‘� B, the conclusion

809follows from Proposition 9.6ðiiÞ.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

810(v) Let S be the �-deductive closure of
�:A. By PartðiiÞ, A

�)B is in S.

811By the Universal Rule, B
�)B is in S. By Proposition 9.10,

812A _ B
�)B is in S.

(vi) By PartðiiÞ above,
�:A ‘� A

�)B. By the Meta-Universal Rule,

814B ‘� A
�)B. The conclusion follows from Proposition 9.6ðiiÞ.

815

Ì
818
819PartðiiiÞ above is a weak version of the ideal law A;

�:A ‘� B. PartðivÞ
820and PartðvÞ are closely related to the ideal law A _ B;

�:A ‘� B. And the

821converse A
�)B ‘� �:A _ B of PartðviÞ is another ideal law. The

822instability of the corresponding rules is addressed in Section 14.

82311. STRONG NEGATION

824DEFINITION 11.1. The algorithm S-NEG expects as input an algorithmic

825statement ½�; u; v�. It runs � as a subprocess with input u. If this

826subprocess halts with output v, then S-NEG outputs 0. If the subprocess

827halts with output other than v, then S-NEG outputs 1. Otherwise S-NEG

828does not halt.

829Let A be an algorithmic statement. Then the strong negation of A,

830denoted by �A, is the algorithmic statement ½S-NEG;A; 1�. Note that �A

831is true if and only if A is directly false, and �A is directly false if and

832only if A is true. In particular, �F is true and �T is directly false.

833RULE 9. The Elimination of Case Rule is an algorithm that implements

834the rule diagram

A _ B

�A

B :

837PROPOSITION 11.2. The above rule is �-valid for all libraries �.

838PROPOSITION 11.3. If � contains all the above rules then

839(i) A;�A ‘� B,

840(ii) F ‘� B,

841(iii) �A ‘� �:A, and

842(iv) F _ A
�() A and F ^ A

�() F .

WAYNE AITKEN AND JEFFREY A. BARRETT

844Proof.

845(i) Let S be the �-deductive closure of A and �A. By the Disjunction

846Introduction Rule, A _ B is in S. So, by the Elimination of Case

847Rule, B is in S.

848(ii) By the Universal Rule, F ‘� � F . By PartðiÞ, F ;�F ‘� B. The

849conclusion follows by Corollary 4.15ðiiiÞ.
850(iii) By PartðiÞ, �A;A ‘� F . By Theorem 7.9, �A ‘� A

�)F .

851(iv) The first biconditional follows from the Disjunction Introduction

852Rule, PartðiiÞ, and Proposition 9.6ðiiÞ. The second follows from the

853Conjunction Rule, PartðiiÞ, and Proposition 7.5ðiÞ. Ì

855

856RULE 10. The Double Negation Rule is an algorithm that simulta-

857neously implements the following rule diagrams:

A ��A

�� A A :

860RULE 11. The Strong De Morgan Rule is an algorithm that simulta-

861neously implements the following rule diagrams:

�ðA _ BÞ �A ^ �B �ðA ^ BÞ �A _ �B

�A ^ �B �ðA _ BÞ �A _ �B �ðA ^ BÞ:

864PROPOSITION 11.4. The Double Negation and Strong De Morgan

865Rules are �-valid for all libraries �.

866PROPOSITION 11.5. If � contains the Double Negation and Strong De

867Morgan Rules, then

868(i) A
�() �A,

869(ii) �ðA _ BÞ �() � A ^ �B; and � ðA ^ BÞ �() �A _ �B.

87112. MATERIAL CONDITIONAL

872DEFINITION 12.1. Define the material conditional A!B to be

873�A _ B. Define HðAÞ to be �A _ A.

874Note that HðAÞ is A!A. Also note that the statement HðAÞ is true if

875and only if the process associated with A halts.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

876PROPOSITION 12.2. If � contains all the above rules, then

877

878A!B ‘� A
�)B:

879Proof. Use Proposition 11.3ðiÞ and Theorem 7.9 to get �A‘� A
�)B.

880By the Meta-Universal rule, B‘� A
�)B. Finally, use Proposition 9.6ðiiÞ.

882Ì

884The material conditional ! has many of the properties one would

885expect. Indeed, some of its properties are stronger than those of the

886connective
�) . The connective ! has, however, several striking

887weaknesses. The following are true for the material conditional in

888classical logic:

A!A; A!A _ B; A ^ B!A; A!ðB!AÞ; ðA!BÞ ^ ðB!CÞ!ðA!CÞ;

A ^ ðA!BÞ!B; and ðA _ BÞ ^ ðA!CÞ ^ ðB!CÞ!C:

891But if A, B, and C are chosen so that HðAÞ; HðBÞ and HðCÞ are false,

892then these statements are all false for the material conditional of

893Definition 12.1.

894Some such tautologies of classical logic can, however, be interpreted

895to form corresponding laws of algorithmic logic containing the con-

896nective
�) (or equivalently ‘�) or containing a mixture of both ! and

897
�) (or ‘�). For example, A

�)A; A
�)A _ B, and A ^ B

�)A hold in

898general for libraries � containing all the above rules. The following give

899further examples (PartsðiÞ and ðivÞ � ðviÞ correspond directly to the

900remaining tautologies above).

901PROPOSITION 12.3. If � contains all the above rules, then

902(i) A ‘� B!A,

903(ii) A!F �() �A,

904(iii) A!B
�() �B!�A,

905(iv) A!B; B!C ‘� A!C,

906(v) A; A!B ‘� B

907(vi) A _ B; A!C; B!C ‘� C, and

(vii) if � ‘� A!B then �;A ‘� B. 909

910Proof.

911(i) Use the Disjunction Introduction Rule.

912(ii) One direction follows from the Disjunction Introduction Rule. The

913other direction uses Proposition 11.3ðiiÞ and Proposition 9.6ðiiÞ.

WAYNE AITKEN AND JEFFREY A. BARRETT

914(iii) This follows from Proposition 11.5ðiÞ, Proposition 9.11, Proposi-

915tion 9.7ðiiiÞ, and Proposition 8.2ðiiiÞ.
916(iv) Use the Disjunction Introduction Rule (twice), Proposition 11.3ðiÞ,
917and Proposition 9.6ðiiÞ (twice).

918(v) Use Proposition 11.3ðiÞ to get A;�A ‘� B. Since A;B ‘� B, the

919result follows from Proposition 9.6ðiiÞ.
920(vi) Use PartðvÞ to get A!C;B!C;A ‘� C and A!C;B!C;B ‘� C.

921Then the result follows from Proposition 9.6ðiiÞ.
ðviiÞ This follows from PartðvÞ. 923Ì

924

925926The last three parts of Proposition 12.3 show that in some ways the

927material conditional ! is stronger than the deductive conditional
�) .

928Section 14 discusses the corresponding rules obtained by replacing !
929with

�) in the last three parts of Proposition 12.3.

930The converse of Proposition 12.3ðviiÞ does not hold. Choose A equal

931to B where HðAÞ is false and � is a valid library. Then A‘� B is true, but

932‘� A!B is false. Contrast this with Theorem 7.9. This illustrates a sense

933in which ! is weaker than
�) .

934Suppose HðAÞ and that � is valid. Then
�:A if and only if �A. Sim-

935ilarly, under these conditions, A
�)B if and only if A!B. The following

936proposition shows what can be done with a halting assumption but with-

937out assuming that � is valid.

938PROPOSITION 12.4. If � contains all the above rules, then

939(i) if
�:A then HðAÞ ‘� �A,

940(ii)
�:A ‘� HðAÞ �) �A,

941(iii) if �;A ‘� B then �;HðAÞ ‘� A!B,

942(iv) if A
�)B then HðAÞ ‘� A!B, and

943(v) A
�)B ‘� HðAÞ �)ðA!BÞ.

945Proof.

946(i) By assumption A
�)F , and F �)�A by Proposition 11.3ðiiÞ, so

947A‘� �A. This together with �A‘� �A gives the result by

948Proposition 9.6ðiiÞ.
949(ii) This follows from the Universal Rule, Proposition 11.3ðiiÞ, the

950Transitivity rule, and Proposition 9.10.

951(iii) By the Disjunction Introduction Rule, �;�A ‘� A!B. We have

952�;A ‘� A!B by assumption and the Disjunction Introduction

953Rule. The result follows from Proposition 9.6ðiiÞ.
954(iv) This follows from PartðiiiÞ.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

(v) This follows from the Disjunction Introduction, Universal, and

956Transitivity Rules, and Proposition 9.10.

957

Ì
960

961We mentioned above several tautologies of classical logic that do not

962hold in general for the algorithmic material conditional. When restricted to

963algorithmic statements that are true or directly false, however, the algo-

964rithmic material conditional can be expected to behave precisely as the

965classical material conditional. The following corollary illustrates this

966phenomenon.

967COROLLARY 12.5. If � contain all the above rules, then

968(i) HðAÞ ‘� A!A,

969(ii) HðAÞ ‘� A!A _ B, and

(iii) HðAÞ;B ‘� A!A ^ B. 971

Proof. These follow directly from Proposition 12.4ðivÞ and ðiiiÞ. 973Ì

97413. STABLE BASE

975The 11 rules developed above are clearly not a complete collection of

976rules for algorithmic logic. Indeed, as will be seen in Proposition 13.7,

977one can never have a complete library of rules for algorithmic logic.

978Rather, the rules discussed so far provides a convenient stable base on

979which to build more elaborate stable libraries.

980DEFINITION 13.1. A base is a set B of rules. We require that a base be

981finite, or at least arises as the set of terms of a library. A B-library is a

982library containing all the rules of the base B. A B-library � is said to be

983valid outside B if every rule in � which is not in B is �-valid. A base B is

984stable if every B-library that is valid outside of B is itself valid.

985Let B0 be the set containing Rules 1 to 11 above.

986THEOREM 13.2. The set B0 is a stable base.

987Proof. Let � be a B0-library that is valid outside B0. We need to show

988that � is valid.

989Rules 1, 2, 4, 6, and 9 are �-valid by Propositions 5.1, 6.1, 7.2, 9.2,

99011.2, respectively. Rules 10 and 11 are �-valid by Proposition 11.4.

991Rule 3 is �-valid by Proposition 6.4 since B contains the Universal

992Rule. Rule 5 is �-valid by Proposition 7.6 since B contains the Con-

993junction Rule. Rule 8 is �-valid by Proposition 9.9 since B contains the

994Disjunction Elimination, Universal, and Conjunction Rules. Finally,

995Theorem 9.5 takes care of Rule 7 and shows that � is valid. Ì

WAYNE AITKEN AND JEFFREY A. BARRETT

997DEFINITION 13.3. Let B be a base. A rule is B-safe if it is �-valid for

998all B-libraries �. A stable extension B0 of B is a base containing B such

999that every rule in B0 that is not in B is B-safe.

1000PROPOSITION 13.4. A stable extension of a stable base is a stable base.

1001Proof. Let B be a stable base and B0 a stable extension of B. Suppose

1002� is a B0-library valid outside of B0. We must show that � is valid.

1003First we show that � is actually valid outside B. To that end, let �k be

1004outside B. If �k happens to be in B0 then it is B-safe by the definition of

1005stable extension. In particular, �k is �-valid. If �k is outside B0 then it is

1006�-valid simply because � is valid outside of B0. Thus � is valid outside B.

1007Since B is stable, and since � is valid outside B, the library � is valid.

1009Ì

1010PROPOSITION 13.5. If the rules of a library forms a stable base, then

1011the library is valid. Thus, if the rules of a library form a stable extension

1012of B0, then the library is valid.

1013DEFINITION 13.6. Let �1 and �2 be libraries. Then �2 is stronger than

1014�1 if A
�1)B implies A

�2)B for all algorithmic statements A and B. A

1015library �2 is strictly stronger than �1 if ðiÞ �2 is stronger than �1, and ðiiÞ
1016there exists A and B such that A

�2)B is true but A
�1)B is false.

1017

1018Algorithmic logic is complete in the sense that, for any library �
1019containing the Universal Rule, if A is true then PROVE�ðAÞ is true. But

1020there is also a sense in which the logic is inherently incomplete.

1021PROPOSITION 13.7. For every valid library �1 there is a strictly

1022stronger valid library �2. If the set of rules in �1 form a stable base B,

1023then �2 can be taken to be a library whose rules form a stable B-

1024extension.

1025Proof. Let MPð�1Þ be the algorithm implementing

A
�1)B
A
B

1027This is a �-valid rule for any library � since �1 is valid.8 There is no

1028algorithm that decides whether a statement is false. Thus there is a false

1029algorithmic statement C such that C
�1)F is false. Let DENYðCÞ be the

1030algorithm implementing the diagram C
F . The rule DENYðCÞ is �-valid for

1031any library � since C is false.

1032Let �2 be the library containing MPð�1Þ, DENYðCÞ, and the Universal

1033Rule. Observe that ðiÞ �2 is valid, ðiiÞ if A
�1)B then A

�1)B, and ðiiiÞ C
�1)

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

1034F is false but C
�1)F is true. To see ðiiÞ, let S be the �2-deductive closure

1035of A. By the Universal Rule, A
�2)B is in S. By MPð�1Þ, B is in S. So �2 is

1036valid and strictly stronger than �1.

1037Now suppose that the rules of �1 form a stable base B. Let �2 contain

1038all the rules of �1; MPð�1Þ, DENYðCÞ, and the Universal Rule. The new

1039rules are B-safe, so the rules of �2 form a stable valid extension of B.

1040Finally, by an argument similar to the one above, �2 is strictly stronger

than �1. 1042Ì

104314. PARADOXICAL RULES

1044A paradoxical rule is an algorithmic counterpart of a traditional rule of

1045logic that cannot be in any stable base.9 In this section we will show that

1046the following are paradoxical rules:

P1 : P2 : P3 : P4 : A
�)C P5 :

A A A
�)B B

�)C
�:A

�:A A A _ B
�: �:A

F B B C A

P6 : A _ B P7 :
�:A _ B P8 : P9 : P10 :

�:A A ; ; A
�)B

B B A _ �:A
�:A _ �: �:A

�:A _ B

P11 : P12 : P13 : P14 :
�: ðA ^ BÞ A PROVE�ðAÞ PROVE�ðPROVE�ðAÞÞ
�:A _ �:B

�: �:A A PROVE�ðAÞ

1049Given the expected input ½H ; �;m�, all of the rules above use �, but only

1050Rules P2, P8, and P9 use the resource integer m in their implementation.

1051The symbol ; in Rules P8 and P9 indicates that no premises in H are

1052required. Clearly, some of the paradoxical rules above are interrelated.

1053Rules P1, P3, P4, P6, P7, P13, and P14 have the remarkable property of

1054being �-valid for any valid library � but, due to their instability, not

1055being in any sufficiently rich valid �. Rule P2 has a similar status, at least

1056for any B0-library �.

1057REMARK. As one might expect, many of these correspond to rules that

1058have aroused suspicion in the past and have been excluded from weaker

1059logics such as intuitionistic or minimal logic. The long list of paradoxical

A
�)C

B
�)C

A _ B
C

A _ B
�:A
B

�:A _ B
A
B

WAYNE AITKEN AND JEFFREY A. BARRETT

1060rules to be avoided in algorithmic logic might make algorithmic logic

1061seem weak. However, in algorithmic logic one always has the option of

1062going to a stronger library �, often compensating for not having the

1063above rules.

1064LEMMA 14.1. Every stable base B has a stable extension B0 with the

1065following property: For every B0-library � there is an algorithmic state-

1066ment Q� such that Q�
�() �: Q�.

1067Proof. The proof requires an algorithm CURRY that expects as input a

1068list ½�; �� where � is an algorithm. If the algorithmic statement
�:
�
�;

1069½�; ��; 1
�

is true, then CURRY outputs 1. Otherwise CURRY does not halt.10

1070Observe that if � is an algorithm, then
�
CURRY; ½�; ��; 1

�
if and only if

1071
�:
�
�; ½�; ��; 1

�
.

1072Let � be the rule that simultaneously implements the two rule

1073diagrams:
�
CURRY; ½�; ��; 1

� �:
�
�; ½�; ��; 1

�

�:
�
�; ½�; ��; 1

� �
CURRY; ½�; ��; 1

�
:

1076More specifically, assuming an input of the expected form ½H ; �;m�, the

1077rule � looks for all statements of the form of the first line of either of the

1078above diagrams, where � is required to be an algorithm. For each such

1079statement it finds, it appends the appropriate statement to H.

1080Clearly � is B-safe where B is the given stable base. Let B0 be the

1081stable extension of B obtained by simply adding the rule � to B. Given a

1082B0-library �, let Q� be
�
CURRY; ½CURRY; ��; 1

�
. So Q�

�() �: Q� since �
contains �. 1084Ì

1085

1086While the rule � used in the above proof is not a rule of elementary

1087logic, and may thus seem ad hoc, it is a consequence of general, more

1088natural rules concerning the basic properties of algorithms. This is

1089discussed in [2].

1090THEOREM 14.2. There is no stable base B such that the law

1091A;
�:A ‘� F holds for all valid B-libraries �.

1092Proof. Suppose that there is such a B, and let B0 be as in Lemma

109314.1. Let � be the library consisting of the rules of B0. The validity of �
1094follows from Proposition 13.5. By Lemma 14.1, there is a statement Q�

1095such that Q�
�() �:Q�. By validity, Q� holds if and only if

�:Q� holds.

1096Let S be the �-deductive closure of Q�. Since, Q� ‘� �:Q�, the set S

1097contains
�:Q�. By assumption Q�;

�:Q� ‘� F holds, so S contains F .

1098Thus Q�
�)F holds; that is,

�:Q� is true. As mentioned above, this

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

1099implies that Q� is true. Since Q�;
�:Q� ‘� F and since � is valid, F is

true. 1101Ì

1102COROLLARY 14.3. No stable base contains Rule P1 or Rule P2

1103(defined at the beginning of this section).

1104COROLLARY 14.4. If B is a stable base, then the assertion that

� ‘� A
�) B implies �;A ‘� B

1107fails for some valid B-library �.

1108Proof. Let � be a valid B-library for which the assertion holds. By

1109Corollary 4.15(ii),
�:A ‘� �:A. In other words,

�:A ‘� A
�)F . So

�:A;
1110A ‘� F by the assertion. By Theorem 14.2 this cannot hold for all such �.

1112Ì

1113COROLLARY 14.5. There is no stable base B such that A
�)B;A ‘� B

1114holds for all B-libraries �. In particular, no stable base contains Rule P3.

1115Proof. Suppose otherwise. If � is a valid B-library, then A;A
�)

1116F ‘� F for all A. In other words, A;
�:A ‘� F holds, contradicting

Theorem 14.2. 1118Ì

1119COROLLARY 14.6 There is no stable base B such that the law

A
�
) C; B

�
) C; A _ B ‘� C

1122holds for all B-libraries �. In particular, no stable base contains Rule P4.

1123Proof. Suppose that there is such a B. The Disjunction Introduction

1124Rule is B-safe, so the base B0 that results from adding this rule to B is

1125also stable. Let � be a valid B0-library. Let S be the deductive closure of

1126A and
�:A. By the Disjunction Introduction Rule, A _ A is in S. Since

1127A
�)F is in S, so is F . Thus A;

�:A ‘� F for all A and all such �, contra-

dicting Theorem 14.2 for the stable base B0. 1129Ì

1130COROLLARY 14.7. There is no stable base B such that the law

1131
�: �: A ‘� A holds for all B-libraries �. In particular, no stable base

1132contains Rule P5.

1133Proof. Suppose that there is such a stable base B. The Universal and

1134Transitivity Rules are B-safe, so the base B0 that results from adding

1135these rules to B is also stable. The Meta-Universal Rule is B0-safe since

1136B0 contains the Universal Rule, so the base B00 that results from adding

1137the Meta-Universal Rule to B0 is also stable.

WAYNE AITKEN AND JEFFREY A. BARRETT

1138Let � be a valid B00-library and A a statement. Let S be the deductive

1139closure of A and
�:A. By the Meta-Universal rule

�:F �)A is in S. Since

1140
�:A is A

�)F , which is in S,
�:F �)F is in S by the Transitivity Rule. In

1141other words,
�: �:F is in S. Thus F is in S by hypothesis. So A;

�:A ‘� F ,

1142contradicting Theorem 14.2 for the base B00. Ì

1144COROLLARY 14.8. There is no stable base B where the law

1145A _ B;
�:A ‘� B holds for all B-libraries �. Likewise, there is no stable

1146base B where the law
�:A _ B;A ‘� B holds for all B-libraries �. In

1147particular, no stable base contains either Rule P6 or Rule P7.

1148Proof. Suppose that there is a B where the first of these laws holds.

1149The Disjunction Introduction Rule is B-safe, so the extension B0 obtained

1150by adding this Rule to B is stable. Let � be any valid B0-library.

1151Let S be the deductive closure of A and
�:A. By the Disjunction

1152Introduction Rule, A _ F is in S. By hypothesis, F is in S. We have

1153established that
�:A;A ‘�F holds for every statement A and valid B0-

1154library �, contradicting Theorem 14.2.

1155The second part of the theorem follows by a similar argument. Ì

1157LEMMA 14.9. Suppose A is an algorithmic statement where A
�() �:A

1158with � a valid library. Then A,
�:A, and

�: �:A are all false.

1159Proof. Suppose A is true. By hypothesis, A
�) �:A. So, by Proposition

116041.8 ðiiiÞ and the validity of �, the statement
�:A holds. Thus A and

1161A
�)F hold. Again, by Proposition 4.18 ðiiiÞ, F is true.

1162Suppose
�:A. By hypothesis,

�:A
�)A. So A is true, contradicting the

1163above.

1164Suppose
�: �:A; in other words,

�:A
�)F . By hypothesis, A

�) �:A. By

1165Proposition 4.18 ðiiÞ, A
�)F . In other words,

�:A which contradicts the

above. 1167Ì

1168COROLLARY 14.10. Let B be a stable base. There is a valid B-library

1169� and an algorithmic statement Q� such that Q�_
�:Q� and

�:Q�_
�: �:Q�

1170are both false. In particular, Rules P8 and P9 are not �-valid.

1171Therefore, there is no stable base containing Rules P8 or P9.

1172Proof. Let B0 be as in Lemma 14.1. Let � be a library consisting of

1173the rules in B0, and let Q� be as in Lemma 14.1. The result follows from

Lemma 14.9. 1175Ì

1176PROPOSITION 14.11. There is no stable base B where A
�)B ‘� �:A _ B

1177holds for all B-libraries �. In particular, no stable base contains Rule P10.

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

1178Proof. Suppose that there is such a B. Let � be a library consisting of

1179the rules in B0 as defined in Lemma 14.1. Let Q� be as in Lemma 14.1.

1180The library � is valid since B0 is a stable base.

1181By hypothesis Q�
�)�:Q� ‘�

�:Q� _
�:Q�, so by Proposition 41.6 and

1182the validity of �, the statement
�:Q� _ �:Q� is true. So

�:Q� is true con-

1183tradicting Lemma 14.9. Ì

1185THEOREM 14.12. There is no stable base B where the law

�1: ðA ^ BÞ ‘�
�1:A _

�1:B

1188holds for all B-libraries �. In particular, no stable base contains Rule

1189P11.

1190Proof. Suppose that there is such a stable base B. The rule

1191represented by the diagram A^�A
F is B-safe. Let B0 be the stable

1192extension obtained by adding this rule to B. Let � be a library consisting

1193of the rules in B0. The library � is valid since B0 is a stable base. The

1194statement
�: ðA ^ �AÞ holds for any A because of the new rule added to

1195the library. So, by hypothesis and the validity of �, the statement

1196
�:A _ �: �A is true for all A.

1197Let � be an algorithm that expects an algorithm � as input. The

1198algorithm � finds the smallest m such that
�: ½�; �; 1� or

�: �½�; �; 1� is

1199m-true. There will be such an m since
�:A _ �: �A holds for all A. If

1200
�: ½�; �; 1� is m-true for this value of m, then � outputs 1. If

�: ½�; �; 1� is

1201not m-true, but
�: �½�; �; 1� is m-true for this value of m, then � outputs

12020. The notion of m-true here is as in the definition of the Universal Rule.

1203Observe that if � is an algorithm then � halts for input �.

1204Let B be the statement ½�; �; 1�. If B is true, then
�:B is true. If �B is

1205true, then
�: �B. Since � is valid, it is not possible for a statement A and

1206its negation
�:A to both be true. So neither B nor �B is true. In other

words, � does not halt for input �, a contradiction. 1208Ì

1209PROPOSITION 14.13. Let B be a stable base. Then there is a valid B-

1210library � such that
�: �:T is false. Furthermore, the law A ‘� �: �:A does

1211not hold for all B-libraries �. In particular, no stable base contains

1212Rule P12.

1213Proof. As in the proof of Corollary 14.7, there is a stable base B00
1214containing B together with the Universal, the Meta-Universal, and the

1215Transitivity Rules. Let � be any valid B00-library. Suppose,
�: �:T holds.

1216Thus
�:T ‘�F . Let S be the deductive closure of A and

�:A. By the Meta-

1217Universal Rule, T �)A is in S. Note that A
�)F is in S, so, by the

1218Transitivity Rule, T �)F is in S. In other words,
�:T is in S. Since

1219
�:T ‘�F is true, F must be in S.

WAYNE AITKEN AND JEFFREY A. BARRETT

1220We have established that if
�: �:T holds then

�:A;A ‘�F holds for all

1221A. Therefore, by Theorem 14.2, there must be a valid B00-library � such

1222that
�: �:T is false. The law A ‘�

�: �:A does not hold for such �. To see

1223this, consider the case where A is T . Ì

1225THEOREM 14.14. There is no stable base B where the law

PROVE�ðPROVE�ðAÞÞ ‘� PROVE�ðAÞ
1228holds for all B-libraries �. In particular, there is no stable base B where

1229PROVE�ðAÞ ‘� A holds for all B-libraries �. So no stable base contains

1230Rule P13 or Rule P14.

1231Proof. Suppose otherwise that there is such a stable base B. As in the

1232proof of Corollary 14.7, there is a stable base B00 containing B together

1233with the Universal, the Meta-Universal, and the Transitivity Rules.

1234Consider an algorithm � that expects as input ½�; �� where � is an

1235algorithm. The algorithm � checks the truth of
�
�; ½�; ��; 1

� �)
1236PROVE�ðFÞ. If the statement is true, � outputs 1. Otherwise, � does not

1237halt. Let R� be the statement
�
�; ½�; ��; 1

�
. Observe that R� is true if and

1238only if R�
�) PROVE�ðFÞ is true.

1239The rule implementing

R�

R�
�
) PROVE�ðF Þ

1242is �-valid for all libraries �. Let � be the library consisting of this rule

1243together with all the rules of B00. TheB00-library � is valid since B00 is stable.

1244Let S be the deductive closure of R�. So R�
�) PROVE�ðFÞ is in S. By

1245Proposition 6.5ðiiÞ, PROVE�ðPROVE�ðFÞÞ is in S. Finally, by supposition,

1246PROVE�ðFÞ is also in S. We have shown that R�
�) PROVE�ðFÞ is true.

1247Therefore, R� is true. Since � is valid, Proposition 4.18ðiiiÞ implies that

1248PROVE�ðFÞ is true. So by Proposition 4.18ðivÞ and the validity of �, F is

true. 1250Ì

125115. CONCLUSION

1252In [2] we introduce additional rules to algorithmic logic which do not

1253concern logical connectives as do the rules in the current paper. Instead,

1254these new rules relate to the basic structure of algorithms themselves.

1255These structural rules will lead to a strong internal abstraction principle

1256making algorithmic logic more flexible and powerful.

1257In particular, for bases B containing these structural rules, Lemma

125814.1 can be strengthened to apply to all B-libraries �. Consequently, the

1259main results of Section 14 can be significantly strengthened. More

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

1260precisely, let B1 be the stable base consisting of B0 together with the

1261structural rules of the promised future paper. Many of the results of

1262Section 14 refer to laws which do not hold for all B-libraries. In other

1263words there exists some B-library where the law fails. For the base B1,

1264however, these results can be strengthened to assert that the given law

1265fails for all valid B1-libraries.

1266In Section 14 above we mention that several of the paradoxical rules

1267are �-valid as long as � is valid. The other rules, with one exception,

1268cannot be expected to be �-valid. More specifically, if � is a valid B1-

1269library, then all the other rules, with the exception of Rule P5, are not �-

1270valid. This can be seen with arguments similar to those of Section 14.

1271Rule P5 is �-valid for such �, however, because of the striking fact that

1272
�: �:A is false for all A. This fact can be shown with an argument similar

1273to that of Proposition 14.13.11

1274

1275NOTES

12761 Of course, restricted versions of T can be defined to apply to functions on a
1277fixed domain.

12782 This is in contrast to sets where good conceptual reasons have been given to
1279restrict the comprehension principle.

12803 Recent examples include [3, 6, 11]. Recent examples from the substructural
1281tradition include [4, 8, 12, 14, 15]. See the bibliographies of these works for earlier

1282examples. The articles in [9], especially those by A. Cantini, S. Feferman, H. Field,
1283H. Friedman, H. Sturm, and K. Wehmeier, show the contemporary interest in type-
1284free systems and in strong forms of comprehension and abstraction.

12854 We recommend [3, 5, 10] as interesting introductions to type-free logic. We
1286have found [13] to be a helpful introduction to the substructural tradition.

12875 In this paper algorithms will be limited to recursive algorithms. With this
1288restriction, the collection of algorithmic statements can be seen to be in some sense

1289equivalent to the collection of �1-statements in first-order arithmetic.

12906 This definition depends on � as well as the particular rule �k .

12917 To see the usual disjunction elimination rule, think of G as T . Allowing general

1292G is important in the proof of Proposition 9.6.

12938 This rule differs essentially from P3 discussed in Section 14 in that, given input

1294½H ; �;m�, the rule MPð�1Þ does not use the input �, but rather uses the fixed library �1.

1295Rule P3, on the other hand, does use the input �.

12969 The term paradoxical is used since many of the arguments related to such rules

1297are akin to those occurring in the Russell and Curry paradoxes.

129810 This algorithm is called CURRY due to the resemblance of the proof of Theorem

129914.2 to a common version of the Curry Paradox.

130011 We would like to thank our colleagues for many useful discussions, and the
1301referees for several good suggestions including the suggestion to use the term strong

1302negation in honor of David Nelson. One referee asked an interesting question
1303concerning the status of ðA

�
) �:BÞ ‘� ðB

�
) �:AÞ, a contrapositive law whose analogue

WAYNE AITKEN AND JEFFREY A. BARRETT

1304holds in intuitionistic and even minimal logic. For sufficiently rich �, the statement
�: �:T

1305is false (Proposition 14.13). For such valid � the law fails: consider the case where A is

1306
�:T and B is T .

1307

1308REFERENCES

13091. Aitken, W. and Barrett J. A. (2004): Computer implication and the curry paradox,

1310J. Philos. Logic 33, 631Y637.

13112. Aitken, W. and Barrett, J. A.: Abstraction in Algorithmic Logic (preprint).

13123. Cantini, A. (1996): Logical frameworks for truth and abstraction: An axiomatic

1313study, North-Holland. ISBN: 0-444-82306-9.

13144. Cantini, A. (2003): The undecidability of Gri�ssin’s set theory, Stud. Log. 74(3),

1315345Y368.

13165. Feferman, S. (1984): Toward useful type-free theories, J. Symb. Log. 49, 75Y111.

13176. Field, H. (2004): The consistency of the naı̈ve theory of properties, Philos. Q.

131854(214), 78Y104.

13197. Fitch, F. B. (1969): A method for avoiding the Curry paradox, in N. Rescher (ed.),

1320Essays in Honor of Carl G. Hempel, pp. 255Y265.

13218. Girard, J.-Y. (1998): Light linear logic, Inform. Comput. 143(2), 175Y204.

13229. Link, G. (ed.) (2004): One hundred years of Russell’s paradox: Mathematics, logic,

1323philosophy, de Gruyter. ISBN 3-11-017438-3.

132410. Myhill, J. (1984) Paradoxes, Synthese 60, 129Y143.

132511. Orilia, F. (2000): Property theory and the revision theory of definitions, J. Symb. Log.

132665(1), 212Y246.

132712. Petersen, U. (2000): Logic without contraction as based on inclusion and unrestricted

1328abstraction, Stud. Log. 64(3), 365Y403.

132913. Restall, G. (1994): On logics without contraction, doctoral dissertation, University of

1330Queensland.

133114. Terui, K. (2004) Light affine set theory: A naive set theory of polynomial time, Stud.

1332Log. 77(1), 9Y40.

133315. Weir, A. (1998): Naı̈ve set theory, paraconsistency and indeterminacy. I., Log. Anal.

1334(N.S.) 41(161Y163), 219Y266.

1335

1336WAYNE AITKEN

1337California State University,

1338San Marcos, CA 92096,

1339USA

1340E-mail: waitken@csusm.edu

1341JEFFREY A. BARRETT

1342UC Irvine,

1343Irvine, CA 92697,

1344USA

1345E-mail: jabarret@uci.edu

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

